• Previous Article
    Existence and uniqueness of solutions of a system of nonlinear PDE for phase transitions with vector order parameter
  • PROC Home
  • This Issue
  • Next Article
    Exponential attractors for 2d magneto-micropolor fluid flow in bounded domain
2005, 2005(Special): 642-651. doi: 10.3934/proc.2005.2005.642

Accounting for nonlinearities in mathematical modelling of quantum dot molecules


Mathematical Modelling and Computational Sciences, Wilfrid Laurier University, Waterloo, 75 University Avenue West, Waterloo, ON, Canada


Mads Clausen Institute, Syddansk University, Grundtvigs Alle 150, DK-6400 Sonderborg, Denmark, Denmark


Department of Physics, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45305, United States


Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States

Received  September 2004 Revised  May 2005 Published  September 2005

Nonlinear mathematical models are becoming increasingly important for new applications of low-dimensional semiconductor structures. Examples of such structures include quasi-zero-dimensional quantum dots that have potential applications ranging from quantum computing to nano-biological devices. In this contribution, we analyze presently dominating linear models for bandstructure calculations and demonstrate why nonlinear models are required for characterizing adequately optoelectronic properties of self-assembled quantum dots.
Citation: Roderick Melnik, B. Lassen, L. C Lew Yan Voon, M. Willatzen, C. Galeriu. Accounting for nonlinearities in mathematical modelling of quantum dot molecules. Conference Publications, 2005, 2005 (Special) : 642-651. doi: 10.3934/proc.2005.2005.642

Doron Levy, Tiago Requeijo. Modeling group dynamics of phototaxis: From particle systems to PDEs. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 103-128. doi: 10.3934/dcdsb.2008.9.103


Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2693-2728. doi: 10.3934/dcdss.2021002


Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri. Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4 (4) : 667-708. doi: 10.3934/nhm.2009.4.667


Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control and Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501


Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623


Maria Francesca Carfora, Enrica Pirozzi. Stochastic modeling of the firing activity of coupled neurons periodically driven. Conference Publications, 2015, 2015 (special) : 195-203. doi: 10.3934/proc.2015.0195


Joseph R. Zipkin, Martin B. Short, Andrea L. Bertozzi. Cops on the dots in a mathematical model of urban crime and police response. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1479-1506. doi: 10.3934/dcdsb.2014.19.1479


Yasemin Şengül. Viscoelasticity with limiting strain. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330


Sandesh Athni Hiremath, Christina Surulescu, Anna Zhigun, Stefanie Sonner. On a coupled SDE-PDE system modeling acid-mediated tumor invasion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2339-2369. doi: 10.3934/dcdsb.2018071


Olaf Hansen. A global existence theorem for two coupled semilinear diffusion equations from climate modeling. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 541-564. doi: 10.3934/dcds.1997.3.541


Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492


Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021


Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071


Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43


Enrico Valdinoci. Contemporary PDEs between theory and applications. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : i-i. doi: 10.3934/dcds.2015.35.12i


Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213


Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1


Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063


Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119


Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

 Impact Factor: 


  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

[Back to Top]