2005, 2005(Special): 682-691. doi: 10.3934/proc.2005.2005.682

Maximal sustainable yield in a multipatch habitat

1. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States

2. 

Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124

Received  September 2004 Revised  April 2005 Published  September 2005

We have considered a generalized $n$-patch model of harvesting population dynamics with continuous and discrete time. The main result is the condition when parameters which maximize the total ’stationary’ yield also have to stabilize the stationary point, in order to produce and maintain sustainable yield. Conditions when reserves or no-take areas are needed to increase the yield are derived.
Citation: Igor Nazarov, Bai-Lian Li. Maximal sustainable yield in a multipatch habitat. Conference Publications, 2005, 2005 (Special) : 682-691. doi: 10.3934/proc.2005.2005.682
[1]

Dongmei Xiao. Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 699-719. doi: 10.3934/dcdsb.2016.21.699

[2]

Peixuan Weng, Xiao-Qiang Zhao. Spatial dynamics of a nonlocal and delayed population model in a periodic habitat. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 343-366. doi: 10.3934/dcds.2011.29.343

[3]

Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control and Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043

[4]

Kunquan Lan, Wei Lin. Population models with quasi-constant-yield harvest rates. Mathematical Biosciences & Engineering, 2017, 14 (2) : 467-490. doi: 10.3934/mbe.2017029

[5]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[6]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[7]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[8]

Yueding Yuan, Yang Wang, Xingfu Zou. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5633-5671. doi: 10.3934/dcdsb.2019076

[9]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[10]

Hiroaki Morimoto. Optimal harvesting and planting control in stochastic logistic population models. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2545-2559. doi: 10.3934/dcdsb.2012.17.2545

[11]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005

[12]

Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178

[13]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[14]

Yue Meng, Jing Ge, Zhigui Lin. Dynamics of a free boundary problem modelling species invasion with impulsive harvesting. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022060

[15]

Miaomiao Chen, Rong Yuan. Maximum principle for the optimal harvesting problem of a size-stage-structured population model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4619-4648. doi: 10.3934/dcdsb.2021245

[16]

Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156-165. doi: 10.3934/proc.2001.2001.156

[17]

Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125

[18]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks and Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[19]

Masahiro Yamaguchi, Yasuhiro Takeuchi, Wanbiao Ma. Population dynamics of sea bass and young sea bass. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 833-840. doi: 10.3934/dcdsb.2004.4.833

[20]

MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777

 Impact Factor: 

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]