2005, 2005(Special): 746-755. doi: 10.3934/proc.2005.2005.746

Null controllability of a damped Mead-Markus sandwich beam

1. 

Iowa State University, Department of Mathematics, Ames, IA 50011

2. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States

Received  September 2004 Revised  March 2005 Published  September 2005

The Mead-Markus sandwich beam model with shear damping is shown to be null controllable modulo a one dimensional state in an arbitrarily short time. The moment method is used to obtain this result.
Citation: Rajeev Rajaram, Scott W. Hansen. Null controllability of a damped Mead-Markus sandwich beam. Conference Publications, 2005, 2005 (Special) : 746-755. doi: 10.3934/proc.2005.2005.746
[1]

Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations & Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022

[2]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[3]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[4]

Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285

[5]

Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations & Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023

[6]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[7]

Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021036

[8]

R.H. Fabiano, Scott W. Hansen. Modeling and analysis of a three-layer damped sandwich beam. Conference Publications, 2001, 2001 (Special) : 143-155. doi: 10.3934/proc.2001.2001.143

[9]

Aaron A. Allen, Scott W. Hansen. Analyticity and optimal damping for a multilayer Mead-Markus sandwich beam. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1279-1292. doi: 10.3934/dcdsb.2010.14.1279

[10]

A. Özkan Özer, Scott W. Hansen. Uniform stabilization of a multilayer Rao-Nakra sandwich beam. Evolution Equations & Control Theory, 2013, 2 (4) : 695-710. doi: 10.3934/eect.2013.2.695

[11]

Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365

[12]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[13]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[14]

R. Demarque, J. Límaco, L. Viana. Local null controllability of coupled degenerate systems with nonlocal terms and one control force. Evolution Equations & Control Theory, 2020, 9 (3) : 605-634. doi: 10.3934/eect.2020026

[15]

Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control & Related Fields, 2020, 10 (2) : 217-256. doi: 10.3934/mcrf.2019037

[16]

Idriss Boutaayamou, Lahcen Maniar, Omar Oukdach. Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021044

[17]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[18]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[19]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force. Evolution Equations & Control Theory, 2021, 10 (3) : 545-573. doi: 10.3934/eect.2020080

[20]

Mu-Ming Zhang, Tian-Yuan Xu, Jing-Xue Yin. Controllability properties of degenerate pseudo-parabolic boundary control problems. Mathematical Control & Related Fields, 2020, 10 (1) : 157-169. doi: 10.3934/mcrf.2019034

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]