-
Previous Article
Multiple positive solutions of some nonlinear heat flow problems
- PROC Home
- This Issue
-
Next Article
Positive radial solutions for quasilinear equations in the annulus
Stability and symmetry breaking of solutions of semilinear elliptic equations
1. | Department of Applied Mathematics, Hsuan Chuang University, Hsinchu, Taiwan |
[1] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[2] |
Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829 |
[3] |
Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17 |
[4] |
Frank Hettlich. The domain derivative for semilinear elliptic inverse obstacle problems. Inverse Problems and Imaging, 2022, 16 (4) : 691-702. doi: 10.3934/ipi.2021071 |
[5] |
Kelei Wang. Recent progress on stable and finite Morse index solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 3805-3816. doi: 10.3934/era.2021062 |
[6] |
A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987 |
[7] |
Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823 |
[8] |
Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847 |
[9] |
Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219 |
[10] |
Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083 |
[11] |
Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure and Applied Analysis, 2019, 18 (2) : 751-794. doi: 10.3934/cpaa.2019037 |
[12] |
Francesco Della Pietra, Ireneo Peral. Breaking of resonance for elliptic problems with strong degeneration at infinity. Communications on Pure and Applied Analysis, 2011, 10 (2) : 593-612. doi: 10.3934/cpaa.2011.10.593 |
[13] |
Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166 |
[14] |
Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361 |
[15] |
Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 |
[16] |
Joseph A. Iaia. Localized radial solutions to a semilinear elliptic equation in $\mathbb{R}^n$. Conference Publications, 1998, 1998 (Special) : 314-326. doi: 10.3934/proc.1998.1998.314 |
[17] |
Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122 |
[18] |
Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795 |
[19] |
Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control and Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011 |
[20] |
Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure and Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]