-
Previous Article
Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems
- PROC Home
- This Issue
-
Next Article
An application of optimal transport paths to urban transport networks
A general class of nonlinear impulsive integral differential equations and optimal controls on Banach spaces
1. | Department of Mathematics, Guizhou University, Guiyang, Guizhou, 550025, China, China |
2. | Department of Mathematics, Guizou University, Guiyang, Guizhou Province |
[1] |
Yixuan Wu, Yanzhi Zhang. Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 851-876. doi: 10.3934/dcdss.2022016 |
[2] |
Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control and Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016 |
[3] |
Chongyang Liu, Wenjuan Sun, Xiaopeng Yi. Optimal control of a fractional smoking system. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022071 |
[4] |
Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011 |
[5] |
Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842 |
[6] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3703-3718. doi: 10.3934/dcdss.2021020 |
[7] |
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613 |
[8] |
Térence Bayen, Alain Rapaport, Fatima-Zahra Tani. Optimal periodic control for scalar dynamics under integral constraint on the input. Mathematical Control and Related Fields, 2020, 10 (3) : 547-571. doi: 10.3934/mcrf.2020010 |
[9] |
Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial and Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73 |
[10] |
Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations and Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507 |
[11] |
Yongjian Liu, Zhenhai Liu, Ching-Feng Wen. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1297-1307. doi: 10.3934/dcdsb.2019017 |
[12] |
C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic and Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335 |
[13] |
Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2139-2154. doi: 10.3934/cpaa.2021061 |
[14] |
Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control and Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007 |
[15] |
Yunfei Yuan, Changchun Liu. Optimal control for the coupled chemotaxis-fluid models in two space dimensions. Electronic Research Archive, 2021, 29 (6) : 4269-4296. doi: 10.3934/era.2021085 |
[16] |
Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022014 |
[17] |
Nguyen Dinh Cong. Semigroup property of fractional differential operators and its applications. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022064 |
[18] |
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43 |
[19] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[20] |
Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial and Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]