# American Institute of Mathematical Sciences

2007, 2007(Special): 10-17. doi: 10.3934/proc.2007.2007.10

## A free boundary problem for an elastic material

 1 Department of Mathematics, Faculty of Education, Gifu University, Yanagido 1-1, Gifu, Gifu, 501-1193, Japan

Received  September 2006 Revised  August 2007 Published  September 2007

In this paper we investigate the dynamics of an elastic material, for example, a spring with some weight. Such dynamics is usually represented by the ordinary differential equation for the length of the spring or the partial differential equation with the linear strain on a fixed domain. The main purpose of this paper is to propose a new free boundary problem with a nonlinear strain as a mathematical model for an elastic material. Also, we establish the wellposedness for initial boundary value problem with the nonlinear strain on the cylindrical domain.
Citation: Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10
 [1] Yizhao Qin, Yuxia Guo, Peng-Fei Yao. Energy decay and global smooth solutions for a free boundary fluid-nonlinear elastic structure interface model with boundary dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1555-1593. doi: 10.3934/dcds.2020086 [2] Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4397-4410. doi: 10.3934/dcdsb.2020103 [3] Yang Zhang. A free boundary problem of the cancer invasion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1323-1343. doi: 10.3934/dcdsb.2021092 [4] Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431 [5] Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control and Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020 [6] Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209 [7] Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003 [8] Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655 [9] Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337 [10] Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44 [11] Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293 [12] Mustapha El Jarroudi, Youness Filali, Aadil Lahrouz, Mustapha Er-Riani, Adel Settati. Asymptotic analysis of an elastic material reinforced with thin fractal strips. Networks and Heterogeneous Media, 2022, 17 (1) : 47-72. doi: 10.3934/nhm.2021023 [13] Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087 [14] Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713 [15] Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1915-1934. doi: 10.3934/jimo.2021049 [16] Junde Wu. Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3399-3411. doi: 10.3934/dcds.2019140 [17] Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 [18] Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128 [19] Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789 [20] Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

Impact Factor: