-
Previous Article
Strongly damped wave equations in $W^(1,p)_0 (\Omega) \times L^p(\Omega)$
- PROC Home
- This Issue
-
Next Article
Relaxation approximation of the Kerr model for the impedance initial-boundary value problem
Comparison results for a class of quasilinear evolutionary hemivariational inequalities
1. | Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany |
[1] |
Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101 |
[2] |
Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058 |
[3] |
Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure and Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795 |
[4] |
Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339 |
[5] |
Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial and Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827 |
[6] |
Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545 |
[7] |
Changjie Fang, Weimin Han. Stability analysis and optimal control of a stationary Stokes hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 995-1008. doi: 10.3934/eect.2020046 |
[8] |
Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129 |
[9] |
Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320 |
[10] |
Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709 |
[11] |
Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144 |
[12] |
Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003 |
[13] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
[14] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[15] |
Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036 |
[16] |
Furi Guo, Jinrong Wang, Jiangfeng Han. Impulsive hemivariational inequality for a class of history-dependent quasistatic frictional contact problems. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021057 |
[17] |
Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial and Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591 |
[18] |
Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227 |
[19] |
Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110 |
[20] |
Guodong Ma, Jinbao Jian. A QP-free algorithm of quasi-strongly sub-feasible directions for inequality constrained optimization. Journal of Industrial and Management Optimization, 2015, 11 (1) : 307-328. doi: 10.3934/jimo.2015.11.307 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]