2007, 2007(Special): 304-312. doi: 10.3934/proc.2007.2007.304

Entropy methods for reaction-diffusion systems

1. 

ENS Cachan, CMLA, IUF & CNRS, PRES UniverSud, 61, Av. du Pdt Wilson, 94235 Cachan Cedex, France

2. 

Faculty of Mathematics, University of Vienna, Nordbergstr. 15, 1090 Wien, Austria

Received  July 2006 Revised  April 2007 Published  September 2007

In the continuation of [6], we study reversible reaction-diffusion systems via entropy methods (based on the free energy functional). We show for a particular model problem with two reacting species in which one of the diffusion constants vanishes that the solutions decay exponentially with explicit rate and constant towards the unique constant equilibrium state.
Citation: Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304
[1]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic and Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[2]

Toshi Ogawa. Degenerate Hopf instability in oscillatory reaction-diffusion equations. Conference Publications, 2007, 2007 (Special) : 784-793. doi: 10.3934/proc.2007.2007.784

[3]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure and Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[4]

Xin Li, Xingfu Zou. On a reaction-diffusion model for sterile insect release method with release on the boundary. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2509-2522. doi: 10.3934/dcdsb.2012.17.2509

[5]

Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669

[6]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[7]

Mostafa Bendahmane, Kenneth H. Karlsen. Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks and Heterogeneous Media, 2006, 1 (1) : 185-218. doi: 10.3934/nhm.2006.1.185

[8]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[9]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[10]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[11]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1465-1477. doi: 10.3934/dcdss.2020395

[12]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[13]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[14]

Shuang Liu, Xinfeng Liu. Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 141-159. doi: 10.3934/dcdsb.2019176

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

[16]

Siqing Li, Zhonghua Qiao. A meshless collocation method with a global refinement strategy for reaction-diffusion systems on evolving domains. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 601-617. doi: 10.3934/dcdsb.2021057

[17]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[18]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[19]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[20]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

 Impact Factor: 

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]