# American Institute of Mathematical Sciences

2007, 2007(Special): 568-572. doi: 10.3934/proc.2007.2007.568

## Fixed points and complete lattices

 1 Department of Mathematics, Southwest Missouri State University, Springfield, MO 65804, United States

Received  September 2006 Revised  April 2007 Published  September 2007

Tarski proved in 1955 that every complete lattice has the fixed point property. Later, Davis proved the converse that every lattice with the fixed point property is complete. For a chain complete ordered set, there is the well known Abian-Brown fixed point result. As a consequence of the Abian-Brown result, every chain complete ordered set with a smallest element has the fixed point property. In this paper, a new characterization of a complete lattice is given. Also, fixed point theorems are given for decreasing functions where the partially ordered set need not be dense as is the usual case for fixed point results for decreasing functions.
Citation: Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568
 [1] John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443 [2] Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761 [3] Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517 [4] Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001 [5] Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043 [6] Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583 [7] Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043 [8] Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264 [9] Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264 [10] Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038 [11] Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319 [12] Inmaculada Baldomá, Ernest Fontich, Pau Martín. Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4159-4190. doi: 10.3934/dcds.2017177 [13] Jifa Jiang, Lei Niu. On the equivalent classification of three-dimensional competitive Atkinson/Allen models relative to the boundary fixed points. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 217-244. doi: 10.3934/dcds.2016.36.217 [14] A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. [15] Inmaculada Baldomá, Ernest Fontich, Rafael de la Llave, Pau Martín. The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 835-865. doi: 10.3934/dcds.2007.17.835 [16] Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557 [17] Dmitry Treschev. Travelling waves in FPU lattices. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 [18] Vieri Benci, Donato Fortunato. Hylomorphic solitons on lattices. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 875-897. doi: 10.3934/dcds.2010.28.875 [19] Hervé Le Dret, Annie Raoult. Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8 (2) : 541-572. doi: 10.3934/nhm.2013.8.541 [20] Josef Diblík, Zdeněk Svoboda. Existence of strictly decreasing positive solutions of linear differential equations of neutral type. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 67-84. doi: 10.3934/dcdss.2020004

Impact Factor:

## Metrics

• PDF downloads (41)
• HTML views (0)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]