\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hamiltonian dynamics of atom-diatomic molecule complexes and collisions

Abstract Related Papers Cited by
  • For a polyatomic molecule at zero total angular momentum, this paper shows that an internal motion with nonzero internal angular momentum within a (generalized) Eckart frame will produce a net rotation of the (generalized) Eckart frame in the center-of-mass frame. For a polyatomic molecule at nonzero total angular momentum, an internal motion within a generalized Eckart frame with nonzero orbital angular momentum will produce a net rotation of the generalized Eckart frame in the center-of-mass frame. Specifically, at zero total angular momentum, an internal rotation of a diatomic molecule within an atom-diatomic molecule system has nonzero internal rotational angular momentum and produces a counter-rotary net rotation of the orientation of the system (and of its generalized Eckart frame) in the center-of mass frame. Beyond a net overall rotation of an atom-diatomic molecule complex in the center-of-mass frame, a net rotation of the scattering angle of an atom colliding with a rotating diatomic molecule is obtained. A rotation in the recoil angle of an atom departing from a dissociating triatomic molecule has been observed.
    Mathematics Subject Classification: Primary: 70F07, 70H05; Secondary: 70H33, 53D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return