2007, 2007(Special): 741-750. doi: 10.3934/proc.2007.2007.741

Limit of kinetic term for a Stefan problem

1. 

Warsaw University, Inst. of Applied Math. and Mech., ul. Banacha 2, 02-097 Warszawa, Poland

Received  September 2006 Revised  April 2007 Published  September 2007

We investigate solutions to the one-phase quasi-stationary Stefan problem with the surface tension and kinetic term. Main results show existence of unique regular solutions with a suitable bound which enables to obtain the limit as the kinetic term is vanishing. Our problem is considered in anisotropic Besov spaces locally in time.
Citation: Piotr B. Mucha. Limit of kinetic term for a Stefan problem. Conference Publications, 2007, 2007 (Special) : 741-750. doi: 10.3934/proc.2007.2007.741
[1]

Mikil Foss, Joe Geisbauer. Higher differentiability in the context of Besov spaces for a class of nonlocal functionals. Evolution Equations & Control Theory, 2013, 2 (2) : 301-318. doi: 10.3934/eect.2013.2.301

[2]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[3]

Abdelkader Boucherif. Nonlocal problems for parabolic inclusions. Conference Publications, 2009, 2009 (Special) : 82-91. doi: 10.3934/proc.2009.2009.82

[4]

Valerii Los, Vladimir Mikhailets, Aleksandr Murach. Parabolic problems in generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3605-3636. doi: 10.3934/cpaa.2021123

[5]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[6]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[7]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[8]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6057-6068. doi: 10.3934/dcdsb.2021002

[9]

Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407

[10]

Mostafa Fazly. Regularity of extremal solutions of nonlocal elliptic systems. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 107-131. doi: 10.3934/dcds.2020005

[11]

Monica Motta, Caterina Sartori. Asymptotic problems in optimal control with a vanishing Lagrangian and unbounded data. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4527-4552. doi: 10.3934/dcds.2015.35.4527

[12]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[13]

Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563

[14]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[15]

Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1783-1820. doi: 10.3934/cpaa.2021041

[16]

Marianne Korten, Charles N. Moore. Regularity for solutions of the two-phase Stefan problem. Communications on Pure & Applied Analysis, 2008, 7 (3) : 591-600. doi: 10.3934/cpaa.2008.7.591

[17]

Sunra J. N. Mosconi. Optimal elliptic regularity: A comparison between local and nonlocal equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 547-559. doi: 10.3934/dcdss.2018030

[18]

Jianping Wang, Mingxin Wang. Free boundary problems with nonlocal and local diffusions Ⅱ: Spreading-vanishing and long-time behavior. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4721-4736. doi: 10.3934/dcdsb.2020121

[19]

Shuhong Chen, Zhong Tan. Optimal interior partial regularity for nonlinear elliptic systems. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 981-993. doi: 10.3934/dcds.2010.27.981

[20]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

 Impact Factor: 

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]