2007, 2007(Special): 804-813. doi: 10.3934/proc.2007.2007.804

Large time behaviour of solutions of nonlinear ode describing hysteresis

1. 

Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received  September 2006 Revised  August 2007 Published  September 2007

We consider a nonlinear ordinary differential system which describes hysteresis input-output relations. The main part of this system is governed by subdifferential operator and it is used to present various hysteresis effects.

  In real phenomena, many hysteresis branches are observed. We are interested in verifying our system to express such branches. Our main objective of this talk is to investigate the precise behaviour of orbits of solutions of our system and show some numerical simulations.
Citation: Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804
[1]

Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

[2]

Jean-Michel Roquejoffre, Luca Rossi, Violaine Roussier-Michon. Sharp large time behaviour in $ N $-dimensional Fisher-KPP equations. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7265-7290. doi: 10.3934/dcds.2019303

[3]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure and Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[4]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[5]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[6]

A. Kh. Khanmamedov. Long-time behaviour of doubly nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1373-1400. doi: 10.3934/cpaa.2009.8.1373

[7]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[8]

Walter Allegretto, Yanping Lin, Shuqing Ma. Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 757-780. doi: 10.3934/dcds.2002.8.757

[9]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 273-309. doi: 10.3934/dcdss.2011.4.273

[10]

Lingbing He, Claude Le Bris, Tony Lelièvre. Periodic long-time behaviour for an approximate model of nematic polymers. Kinetic and Related Models, 2012, 5 (2) : 357-382. doi: 10.3934/krm.2012.5.357

[11]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[12]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[13]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[14]

M. Chipot, A. Rougirel. On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 319-338. doi: 10.3934/dcdsb.2001.1.319

[15]

Rana D. Parshad. Asymptotic behaviour of the Darcy-Boussinesq system at large Darcy-Prandtl number. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1441-1469. doi: 10.3934/dcds.2010.26.1441

[16]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[17]

Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure and Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959

[18]

Feng Li, Erik Lindgren. Large time behavior for a nonlocal nonlinear gradient flow. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022079

[19]

Rod Cross, Hugh McNamara, Leonid Kalachev, Alexei Pokrovskii. Hysteresis and post Walrasian economics. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 377-401. doi: 10.3934/dcdsb.2013.18.377

[20]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

 Impact Factor: 

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]