2007, 2007(Special): 864-874. doi: 10.3934/proc.2007.2007.864

Reduction principle in the theory of stability of difference equations

1. 

Institute of Mathematics and Computer Science, University of Latvia, Raiņa bulvăris 29, Rīga, LV-1459, Latvia

2. 

Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland

Received  September 2006 Revised  February 2007 Published  September 2007

The reduction principle is generalized to the case of the nonautonomous difference equations in Banach space whose right-handed side is allowed to be noninvertible and whose linear part satisfies weaker condition than exponential dichotomy.
Citation: Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864
[1]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[2]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[3]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[4]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[5]

Zhong Tan, Leilei Tong. Asymptotic stability of stationary solutions for magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3435-3465. doi: 10.3934/dcds.2017146

[6]

Parker Childs, James P. Keener. Slow manifold reduction of a stochastic chemical reaction: Exploring Keizer's paradox. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1775-1794. doi: 10.3934/dcdsb.2012.17.1775

[7]

Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23

[8]

Shu Wang, Yixuan Zhao. Asymptotic stability of planar rarefaction wave to a multi-dimensional two-phase flow. Discrete and Continuous Dynamical Systems - B, 2023, 28 (1) : 623-647. doi: 10.3934/dcdsb.2022091

[9]

Siniša Slijepčević. Stability of invariant measures. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[10]

Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027

[11]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[12]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[13]

Tómas Chacón-Rebollo, Macarena Gómez-Mármol, Samuele Rubino. On the existence and asymptotic stability of solutions for unsteady mixing-layer models. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 421-436. doi: 10.3934/dcds.2014.34.421

[14]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[15]

Zhiqian He, Binhua Feng, Jiayin Liu. Existence, stability and asymptotic behaviour of normalized solutions for the Davey-Stewartson system. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022132

[16]

Jie Jiang, Boling Guo. Asymptotic behavior of solutions to a one-dimensional full model for phase transitions with microscopic movements. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 167-190. doi: 10.3934/dcds.2012.32.167

[17]

A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273

[18]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[19]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[20]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

 Impact Factor: 

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]