2007, 2007(Special): 892-902. doi: 10.3934/proc.2007.2007.892

Modelling of thermodynamics of martensitic transformation in shape-memory alloys

1. 

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

Received  September 2006 Revised  January 2007 Published  September 2007

Existence of a solution to the thermo-visco-elasto-"plastic-type" system involving also higher capillarity/viscosity terms and describing thermodynamics of activated martensitic transformation at large strains is proved by a careful successive passage to a limit in a suitably regularized Galerkin approximation.
Citation: Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892
[1]

Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2349-2403. doi: 10.3934/dcds.2015.35.2349

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Genghong Lin, Jianshe Yu, Zhan Zhou, Qiwen Sun, Feng Jiao. Fluctuations of mRNA distributions in multiple pathway activated transcription. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1543-1568. doi: 10.3934/dcdsb.2018219

[4]

Monica Conti, Vittorino Pata, Marta Pellicer, Ramon Quintanilla. A new approach to MGT-thermoviscoelasticity. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4645-4666. doi: 10.3934/dcds.2021052

[5]

Feng Jiao, Qiwen Sun, Genghong Lin, Jianshe Yu. Distribution profiles in gene transcription activated by the cross-talking pathway. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2799-2810. doi: 10.3934/dcdsb.2018275

[6]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[7]

Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009

[8]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[9]

Riccarda Rossi. Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1413-1466. doi: 10.3934/dcdss.2017075

[10]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[11]

Chunrong Chen, T. C. Edwin Cheng, Shengji Li, Xiaoqi Yang. Nonlinear augmented Lagrangian for nonconvex multiobjective optimization. Journal of Industrial & Management Optimization, 2011, 7 (1) : 157-174. doi: 10.3934/jimo.2011.7.157

[12]

Xiao Ai, Guoxi Ni, Tieyong Zeng. Nonconvex regularization for blurred images with Cauchy noise. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021065

[13]

Alexander Vladimirov. Equicontinuous sweeping processes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 565-573. doi: 10.3934/dcdsb.2013.18.565

[14]

Uri M. Ascher. Discrete processes and their continuous limits. Journal of Dynamics & Games, 2020, 7 (2) : 123-140. doi: 10.3934/jdg.2020008

[15]

James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001

[16]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[17]

Giuseppe Toscani. A kinetic description of mutation processes in bacteria. Kinetic & Related Models, 2013, 6 (4) : 1043-1055. doi: 10.3934/krm.2013.6.1043

[18]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[19]

Oliver Knill. A deterministic displacement theorem for Poisson processes. Electronic Research Announcements, 1997, 3: 110-113.

[20]

Rodrigo Samprogna, Cláudia B. Gentile Moussa, Tomás Caraballo, Karina Schiabel. Trajectory and global attractors for generalized processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3995-4020. doi: 10.3934/dcdsb.2019047

 Impact Factor: 

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]