• Previous Article
    Parameter identification and quantitative comparison of differential equations that describe physiological adaptation of a bacterial population under iron limitation
  • PROC Home
  • This Issue
  • Next Article
    Bidifferential graded algebras and integrable systems
2009, 2009(Special): 220-229. doi: 10.3934/proc.2009.2009.220

Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods


Departamento de Mateemática and Instituto de Matemática Bahía Blanca, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca and CONICET, Argentina


Unidad asociada ULL-CSIC “Geometría Diferencial y Mecánica Geométrica”, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain


Unidad Asociada ULL-CSIC Geometría Diferencial y Mecánica Geométrica, Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Serrano 123, 28006 Madrid, Spain

Received  August 2008 Revised  April 2009 Published  September 2009

Here we discuss a geometric integrator for nonholonomic mechanical systems that preserves the nonholonomic constraints, the discrete nonholonomic momentum map, and is also energy-preserving in some important cases. This method does not require a predefined discretization of the nonholonomic constraints. In Euclidean space, it yields a generalization of the classical SHAKE and RATTLE algorithms to the nonholonomic setting. This article shows that the method is second order convergent.
Citation: Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137


Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189


Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003


Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193


Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343


Werner Bauer, François Gay-Balmaz. Variational integrators for anelastic and pseudo-incompressible flows. Journal of Geometric Mechanics, 2019, 11 (4) : 511-537. doi: 10.3934/jgm.2019025


Luis C. garcía-Naranjo, Fernando Jiménez. The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4249-4275. doi: 10.3934/dcds.2017182


Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347


Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109


Mats Vermeeren. Modified equations for variational integrators applied to Lagrangians linear in velocities. Journal of Geometric Mechanics, 2019, 11 (1) : 1-22. doi: 10.3934/jgm.2019001


Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025


Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455


Benedict Leimkuhler, Charles Matthews, Tiffany Vlaar. Partitioned integrators for thermodynamic parameterization of neural networks. Foundations of Data Science, 2019, 1 (4) : 457-489. doi: 10.3934/fods.2019019


A. Alamo, J. M. Sanz-Serna. Word combinatorics for stochastic differential equations: Splitting integrators. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2163-2195. doi: 10.3934/cpaa.2019097


Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185


Yong Chen, Hongjun Gao, María J. Garrido–Atienza, Björn Schmalfuss. Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 79-98. doi: 10.3934/dcds.2014.34.79


Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013


Artur O. Lopes, Elismar R. Oliveira. Entropy and variational principles for holonomic probabilities of IFS. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 937-955. doi: 10.3934/dcds.2009.23.937


Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033


Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

 Impact Factor: 


  • PDF downloads (232)
  • HTML views (0)
  • Cited by (1)

[Back to Top]