2009, 2009(Special): 286-299. doi: 10.3934/proc.2009.2009.286

An improved optimistic three-stage model for the spread of HIV amongst injecting intravenous drug users

1. 

Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United Kingdom, United Kingdom

Received  July 2008 Revised  August 2009 Published  September 2009

We start off this paper with a brief introduction to modeling Human Immunodeficiency Virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS) amongst sharing, injecting drug users (IDUs). Then we describe the mathematical model which we shall use which extends an existing model of the spread of HIV and AIDS amongst IDUs by incorporating loss of HIV infectivity over time. This is followed by the derivation of a key epidemiological parameter, the basic reproduction number $sf(R)_0$. Next we give some analytical equilibrium, local and global stability results. We show that if $sf(R)_0 \le 1$ then the disease will always die out. For $sf(R)_0 > 1$ there is the disease-free equilibrium (DFE) and a unique endemic equilibrium. The DFE is unstable. An approximation argument shows that we expect the endemic equilibrium to be locally stable. We next discuss a more realistic version of the model, relaxing the assumption that the number of addicts remains constant and obtain some results for this model. The subsequent section gives simulations for both models confirming that if $sf(R)_0 \le 1$ then the disease will die out and if $sf(R)_0 > 1$ then if it is initially present the disease will tend to the unique endemic equilibrium. The simulation results are compared with the original model with no loss of HIV infectivity. Next the implications of these results for control strategies are considered. A brief summary concludes the paper.
Citation: David Greenhalgh, Wafa Al-Fwzan. An improved optimistic three-stage model for the spread of HIV amongst injecting intravenous drug users. Conference Publications, 2009, 2009 (Special) : 286-299. doi: 10.3934/proc.2009.2009.286
[1]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[2]

Cristiana J. Silva. Stability and optimal control of a delayed HIV/AIDS-PrEP model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 639-654. doi: 10.3934/dcdss.2021156

[3]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[4]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[5]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[6]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[7]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[8]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[9]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447

[10]

Sze-Bi Hsu, Ming-Chia Li, Weishi Liu, Mikhail Malkin. Heteroclinic foliation, global oscillations for the Nicholson-Bailey model and delay of stability loss. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1465-1492. doi: 10.3934/dcds.2003.9.1465

[11]

Claude-Michel Brauner, Xinyue Fan, Luca Lorenzi. Two-dimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1813-1844. doi: 10.3934/cpaa.2013.12.1813

[12]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3541-3556. doi: 10.3934/dcdss.2020441

[13]

Arni S. R. Srinivasa Rao, Kurien Thomas, Kurapati Sudhakar, Philip K. Maini. HIV/AIDS epidemic in India and predicting the impact of the national response: Mathematical modeling and analysis. Mathematical Biosciences & Engineering, 2009, 6 (4) : 779-813. doi: 10.3934/mbe.2009.6.779

[14]

Hongyong Zhao, Peng Wu, Shigui Ruan. Dynamic analysis and optimal control of a three-age-class HIV/AIDS epidemic model in China. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3491-3521. doi: 10.3934/dcdsb.2020070

[15]

Praveen Kumar Gupta, Ajoy Dutta. Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 393-399. doi: 10.3934/naco.2019038

[16]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[17]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[18]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[19]

A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV co-infection model with CTL-mediated immunity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1725-1764. doi: 10.3934/dcdsb.2021108

[20]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

 Impact Factor: 

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]