2009, 2009(Special): 486-495. doi: 10.3934/proc.2009.2009.486

Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations

1. 

Department of Mathematics, Graduate School of Science, Hokkaido University, Kita 10, Nishi 8,, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan

2. 

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan

Received  July 2008 Revised  April 2009 Published  September 2009

We consider a vectorial nonlinear diffusion equation with inhomogeneous terms in one-dimensional space. In this paper we study approximating problems of singular diffusion equations with a piecewise constant initial data. Also we consider the relationship between the singular diffusion problem and its approximating ones. Moreover we give some numerical experiments for the approximating equation with inhomogeneous terms and a piecewise constant initial data.
Citation: Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486
[1]

G. Bellettini, Giorgio Fusco, Nicola Guglielmi. A concept of solution and numerical experiments for forward-backward diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 783-842. doi: 10.3934/dcds.2006.16.783

[2]

Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495

[3]

Gabriella Bretti, Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 379-394. doi: 10.3934/dcdss.2014.7.379

[4]

Winfried Just. Approximating network dynamics: Some open problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1917-1930. doi: 10.3934/dcdsb.2018188

[5]

Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092

[6]

Marco Campo, José R. Fernández, Maria Grazia Naso. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations and Control Theory, 2019, 8 (3) : 489-502. doi: 10.3934/eect.2019024

[7]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[8]

Samira Amraoui, Didier Auroux, Jacques Blum, Emmanuel Cosme. Back-and-forth nudging for the quasi-geostrophic ocean dynamics with altimetry: Theoretical convergence study and numerical experiments with the future SWOT observations. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022058

[9]

Yan-Yu Chen, Yoshihito Kohsaka, Hirokazu Ninomiya. Traveling spots and traveling fingers in singular limit problems of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 697-714. doi: 10.3934/dcdsb.2014.19.697

[10]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[11]

Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004

[12]

Eric Falcon. Laboratory experiments on wave turbulence. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819

[13]

Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165

[14]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic and Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[15]

Annamaria Canino, Luigi Montoro, Berardino Sciunzi. The jumping problem for nonlocal singular problems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6747-6760. doi: 10.3934/dcds.2019293

[16]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[17]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[18]

Mudassar Imran, Mohamed Ben-Romdhane, Ali R. Ansari, Helmi Temimi. Numerical study of an influenza epidemic dynamical model with diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2761-2787. doi: 10.3934/dcdss.2020168

[19]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[20]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]