2009, 2009(Special): 612-621. doi: 10.3934/proc.2009.2009.612

On normal stability for nonlinear parabolic equations

1. 

Fachbereich Mathematik und Informatik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle

2. 

Department of Mathematics, Vanderbilt University, Nashville, TN 37240

Received  August 2008 Revised  February 2009 Published  September 2009

We show convergence of solutions to equilibria for quasilinear and fully nonlinear parabolic evolution equations in situations where the set of equilibria is non-discrete, but forms a finite-dimensional $C^1$-manifold which is normally stable.
Citation: Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612
[1]

Yuri Latushkin, Jan Prüss, Ronald Schnaubelt. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 595-633. doi: 10.3934/dcdsb.2008.9.595

[2]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[3]

Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193

[4]

Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007

[5]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[6]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[7]

Jun Shen, Kening Lu, Bixiang Wang. Convergence and center manifolds for differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4797-4840. doi: 10.3934/dcds.2019196

[8]

Nguyen Thieu Huy, Pham Truong Xuan, Vu Thi Ngoc Ha, Vu Thi Thuy Ha. Inertial manifolds for parabolic differential equations: The fully nonautonomous case. Communications on Pure and Applied Analysis, 2022, 21 (3) : 943-958. doi: 10.3934/cpaa.2022005

[9]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[10]

Eduard Feireisl, Françoise Issard-Roch, Hana Petzeltová. Long-time behaviour and convergence towards equilibria for a conserved phase field model. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 239-252. doi: 10.3934/dcds.2004.10.239

[11]

José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027

[12]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[13]

Junjie Zhang, Shenzhou Zheng, Chunyan Zuo. $ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3305-3318. doi: 10.3934/dcdss.2021080

[14]

Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537

[15]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[16]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[17]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[18]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[19]

Zonghao Li, Caibin Zeng. Center manifolds for ill-posed stochastic evolution equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2483-2499. doi: 10.3934/dcdsb.2021142

[20]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

 Impact Factor: 

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]