-
Previous Article
Some classes of surfaces in $\mathbb{R}^3$ and $\M_3$ arising from soliton theory and a variational principle
- PROC Home
- This Issue
-
Next Article
Equivalence between observability and stabilization for a class of second order semilinear evolution
A simple model of two interacting signaling pathways in embryonic Xenopus laevis
1. | Department of Computer and Mathematical Sciences, University of Houston-Downtown, Houston, Tx 77002-1001, United States, United States |
2. | Department of Natural Sciences, University of Houston-Downtown, Houston, Tx 77002-1001, United States, United States |
3. | Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, United States |
[1] |
Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCR-ABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 99-114. doi: 10.3934/dcdsb.2004.4.99 |
[2] |
Peter W. Bates, Yu Liang, Alexander W. Shingleton. Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8 (1) : 65-78. doi: 10.3934/nhm.2013.8.65 |
[3] |
Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233 |
[4] |
Jaroslaw Smieja, Marzena Dolbniak. Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1207-1222. doi: 10.3934/mbe.2016039 |
[5] |
Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209 |
[6] |
Krzysztof Fujarewicz, Marek Kimmel, Andrzej Swierniak. On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems. Mathematical Biosciences & Engineering, 2005, 2 (3) : 527-534. doi: 10.3934/mbe.2005.2.527 |
[7] |
Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences & Engineering, 2013, 10 (1) : 167-184. doi: 10.3934/mbe.2013.10.167 |
[8] |
Richard L Buckalew. Cell cycle clustering and quorum sensing in a response / signaling mediated feedback model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 867-881. doi: 10.3934/dcdsb.2014.19.867 |
[9] |
Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253 |
[10] |
José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 |
[11] |
Joaquín Delgado, Eymard Hernández–López, Lucía Ivonne Hernández–Martínez. Bautin bifurcation in a minimal model of immunoediting. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1397-1414. doi: 10.3934/dcdsb.2019233 |
[12] |
Matthias Ngwa, Ephraim Agyingi. A mathematical model of the compression of a spinal disc. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1061-1083. doi: 10.3934/mbe.2011.8.1061 |
[13] |
Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation. Mathematical Biosciences & Engineering, 2016, 13 (1) : 83-99. doi: 10.3934/mbe.2016.13.83 |
[14] |
M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424 |
[15] |
Ismail Abdulrashid, Xiaoying Han. A mathematical model of chemotherapy with variable infusion. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1875-1890. doi: 10.3934/cpaa.2020082 |
[16] |
Diana M. Thomas, Ashley Ciesla, James A. Levine, John G. Stevens, Corby K. Martin. A mathematical model of weight change with adaptation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 873-887. doi: 10.3934/mbe.2009.6.873 |
[17] |
Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973 |
[18] |
Diana M. Thomas, Lynn Vandemuelebroeke, Kenneth Yamaguchi. A mathematical evolution model for phytoremediation of metals. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 411-422. doi: 10.3934/dcdsb.2005.5.411 |
[19] |
Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279 |
[20] |
Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]