-
Previous Article
A hyperbolic relaxation model for product flow in complex production networks
- PROC Home
- This Issue
-
Next Article
A simplified mathematical model of solid tumor regrowth with therapies
Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system
1. | Department of Differential Equations, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 1000 Sofia, Bulgaria |
2. | Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, United States |
[1] |
Corrado Falcolini, Laura Tedeschini-Lalli. A numerical renormalization method for quasi–conservative periodic attractors. Journal of Computational Dynamics, 2020, 7 (2) : 461-468. doi: 10.3934/jcd.2020018 |
[2] |
Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic and Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048 |
[3] |
Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic and Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787 |
[4] |
Marx Chhay, Aziz Hamdouni. On the accuracy of invariant numerical schemes. Communications on Pure and Applied Analysis, 2011, 10 (2) : 761-783. doi: 10.3934/cpaa.2011.10.761 |
[5] |
Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015 |
[6] |
Katherine A. Newhall, Gregor Kovačič, Ildar Gabitov. Polarization dynamics in a resonant optical medium with initial coherence between degenerate states. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2285-2301. doi: 10.3934/dcdss.2020189 |
[7] |
Mark Wilkinson. A Lie algebra-theoretic approach to characterisation of collision invariants of the Boltzmann equation for general convex particles. Kinetic and Related Models, 2022, 15 (2) : 283-315. doi: 10.3934/krm.2022008 |
[8] |
Filippo Gazzola, Lorenzo Pisani. Remarks on quasilinear elliptic equations as models for elementary particles. Conference Publications, 2003, 2003 (Special) : 336-341. doi: 10.3934/proc.2003.2003.336 |
[9] |
P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial and Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393 |
[10] |
Samira Amraoui, Didier Auroux, Jacques Blum, Emmanuel Cosme. Back-and-forth nudging for the quasi-geostrophic ocean dynamics with altimetry: Theoretical convergence study and numerical experiments with the future SWOT observations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022058 |
[11] |
M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982 |
[12] |
M. D. Todorov. Polarization dynamics during takeover collisions of solitons in systems of coupled nonlinears Schödinger equations. Conference Publications, 2011, 2011 (Special) : 1385-1394. doi: 10.3934/proc.2011.2011.1385 |
[13] |
Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 |
[14] |
Douglas Hardin, Edward B. Saff, Ruiwen Shu, Eitan Tadmor. Dynamics of particles on a curve with pairwise hyper-singular repulsion. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5509-5536. doi: 10.3934/dcds.2021086 |
[15] |
Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153 |
[16] |
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 |
[17] |
Corrado Falcolini, Laura Tedeschini-Lalli. Diverging period and vanishing dissipation: Families of periodic sinks in the quasi-conservative case. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6105-6122. doi: 10.3934/dcds.2018263 |
[18] |
Gennadiy Burlak, Salomon García-Paredes. Matter-wave solitons with a minimal number of particles in a time-modulated quasi-periodic potential. Conference Publications, 2015, 2015 (special) : 169-175. doi: 10.3934/proc.2015.0169 |
[19] |
Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583 |
[20] |
Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]