2011, 2011(Special): 126-134. doi: 10.3934/proc.2011.2011.126

Blow-up of solutions to some coagulation and fragmentation equations with growth

1. 

School of Mathematical Sciences, University of KwaZulu-Natal, Durban

Received  July 2010 Revised  November 2010 Published  October 2011

The aim of this note is to show that solutions to a coagulation- fragmentation equation with growth can blow up in a nite time.
Citation: Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126
[1]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[2]

L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203

[3]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks and Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[4]

Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177

[5]

Thomas Lorenz. Nonlocal hyperbolic population models structured by size and spatial position: Well-posedness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4547-4628. doi: 10.3934/dcdsb.2019156

[6]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Spectral theory and time asymptotics of size-structured two-phase population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2969-3004. doi: 10.3934/dcdsb.2020048

[7]

Miaomiao Chen, Rong Yuan. Maximum principle for the optimal harvesting problem of a size-stage-structured population model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4619-4648. doi: 10.3934/dcdsb.2021245

[8]

Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic and Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589

[9]

Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445

[10]

Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations and Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015

[11]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[12]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[13]

Yunfei Lv, Yongzhen Pei, Rong Yuan. On a non-linear size-structured population model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3111-3133. doi: 10.3934/dcdsb.2020053

[14]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[15]

Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022038

[16]

Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311

[17]

Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 635-642. doi: 10.3934/dcdsb.2004.4.635

[18]

Bruno Buonomo, Deborah Lacitignola. On the stabilizing effect of cannibalism in stage-structured population models. Mathematical Biosciences & Engineering, 2006, 3 (4) : 717-731. doi: 10.3934/mbe.2006.3.717

[19]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[20]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

 Impact Factor: 

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]