• Previous Article
    Wavelet analysis of phase clusters in a distributed biochemical system
  • PROC Home
  • This Issue
  • Next Article
    Polarization dynamics during takeover collisions of solitons in systems of coupled nonlinears Schödinger equations
2011, 2011(Special): 1395-1403. doi: 10.3934/proc.2011.2011.1395

Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations

1. 

Department of Mathematics, Faculty of Sciences, Yüzüncü Yil University, 65080, Van, Turkey

Received  June 2010 Revised  April 2011 Published  October 2011

In this paper, we consider a Lienard equation with multiple variable deviating arguments. By using the Lyapunov second (direct) method, we discuss the stability, boundedness and uniform boundedness of solutions of the equation considered. An example is given to illustrate the feasibility of the proposed results.
Citation: Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395
[1]

Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211

[2]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[3]

Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016

[4]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[5]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[6]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[7]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[8]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[9]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[10]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure and Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[11]

Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825

[12]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[13]

Patricia J.Y. Wong. On the existence of fixed-sign solutions for a system of generalized right focal problems with deviating arguments. Conference Publications, 2007, 2007 (Special) : 1042-1051. doi: 10.3934/proc.2007.2007.1042

[14]

Renato Manfrin. On the boundedness of solutions of the equation $u''+(1+f(t))u=0$. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 991-1008. doi: 10.3934/dcds.2009.23.991

[15]

Fuchen Zhang, Xiaofeng Liao, Chunlai Mu, Guangyun Zhang, Yi-An Chen. On global boundedness of the Chen system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1673-1681. doi: 10.3934/dcdsb.2017080

[16]

Xu Zhang, Guanrong Chen. Boundedness of the complex Chen system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021291

[17]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[18]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[19]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[20]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

 Impact Factor: 

Metrics

  • PDF downloads (326)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]