2011, 2011(Special): 1457-1466. doi: 10.3934/proc.2011.2011.1457

Periodic oscillations in a class of fuzzy neural networks under impulsive control

1. 

Department of Dynamics and Control, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

2. 

School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083

Received  June 2010 Revised  April 2011 Published  October 2011

In this paper, a class of fuzzy neural networks under impulsive control is discussed. Using Mawhin's continuation theorem of coincidence degree and the Halanay-type inequalities, some sucient conditions for existence and globally exponential stability of periodic solution are established. Fuzzy rules are put into Lipschitzian condition and a new method to study stability is introduced, based on the Halanay-type inequalities. Furthermore, some neural network models are considered to illustrate the feasibility and e ectiveness of our results.
Citation: Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457
[1]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[2]

Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761

[3]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[4]

Hotaka Udagawa, Taiji Okano, Toshimichi Saito. Permutation binary neural networks: Analysis of periodic orbits and its applications. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022097

[5]

Ivanka Stamova, Gani Stamov. On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1429-1446. doi: 10.3934/dcdss.2020370

[6]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[7]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 359-386. doi: 10.3934/dcdss.2021041

[8]

Kuo-Shou Chiu. Periodicity and stability analysis of impulsive neural network models with generalized piecewise constant delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 659-689. doi: 10.3934/dcdsb.2021060

[9]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[10]

John R. Graef, János Karsai. Oscillation and nonoscillation in nonlinear impulsive systems with increasing energy. Conference Publications, 2001, 2001 (Special) : 166-173. doi: 10.3934/proc.2001.2001.166

[11]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

[12]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[13]

Kun Liang, Wangli He, Yang Yuan, Liyu Shi. Synchronization for singularity-perturbed complex networks via event-triggered impulsive control. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022068

[14]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357

[15]

Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5183-5201. doi: 10.3934/dcdsb.2019056

[16]

Ozlem Faydasicok. Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1245-1258. doi: 10.3934/dcdss.2020359

[17]

Muhammet Mert Ketencigil, Ozlem Faydasicok, Sabri Arik. Novel criteria for robust stability of Cohen-Grossberg neural networks with multiple time delays. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022081

[18]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[19]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[20]

Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055

 Impact Factor: 

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]