2011, 2011(Special): 265-271. doi: 10.3934/proc.2011.2011.265

Finite extinction time property for a delayed linear problem on a manifold without boundary

1. 

Departamento de Matemática Aplicada, E.T.S. Arquitectura. Universidad Politécnica de Madrid, Av. Juan de Herrera 4, Madrid 28040, Spain

2. 

Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza de las Ciencias 3, Madrid 28040, Spain, Spain

Received  July 2010 Revised  April 2011 Published  October 2011

We prove that the mere presence of a delayed term is able to connect the initial state u0 on a manifold without boundary
Citation: Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265
[1]

Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021090

[2]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[3]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054

[4]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[5]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations & Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[6]

Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019

[7]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[8]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[9]

Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

[10]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[11]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii. Restrictions to the use of time-delayed feedback control in symmetric settings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 543-556. doi: 10.3934/dcdsb.2017207

[12]

Isabelle Schneider, Matthias Bosewitz. Eliminating restrictions of time-delayed feedback control using equivariance. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 451-467. doi: 10.3934/dcds.2016.36.451

[13]

Gabriella Di Blasio. Ultraparabolic equations with nonlocal delayed boundary conditions. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4945-4965. doi: 10.3934/dcds.2013.33.4945

[14]

El Mustapha Ait Ben Hassi, Salah-Eddine Chorfi, Lahcen Maniar, Omar Oukdach. Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2021, 10 (4) : 837-859. doi: 10.3934/eect.2020094

[15]

V. Casarino, K.-J. Engel, G. Nickel, S. Piazzera. Decoupling techniques for wave equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 761-772. doi: 10.3934/dcds.2005.12.761

[16]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[17]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[18]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[19]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[20]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

[Back to Top]