\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ellipticity of quantum mechanical Hamiltonians in the edge algebra

Abstract Related Papers Cited by
  • We have studied the ellipticity of quantum mechanical Hamiltonians, in particular of the helium atom, in order to prove existence of a parametrix and corresponding Green operator. The parametrix is considered in local neighbourhoods of coalescence points of two particles. We introduce appropriate hyperspherical coordinates where the singularities of the Coulomb potential are considered as embedded edge/corner-type singularities. This shows that the Hamiltonian can be written as an edge/corner degenerate di erential operator in a pseudo-di erential operator algebra. In the edge degenerate case, we prove the ellipticity of the Hamiltonian.We have studied the ellipticity of quantum mechanical Hamiltonians, in particular of the helium atom, in order to prove existence of a parametrix and corresponding Green operator. The parametrix is considered in local neighbourhoods of coalescence points of two particles. We introduce appropriate hyperspherical coordinates where the singularities of the Coulomb potential are considered as embedded edge/corner-type singularities. This shows that the Hamiltonian can be written as an edge/corner degenerate di erential operator in a pseudo-di erential operator algebra. In the edge degenerate case, we prove the ellipticity of the Hamiltonian.
    Mathematics Subject Classification: Primary: 35J10, 81V45; Secondary: 35J47, 35A17, 35A20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return