-
Previous Article
From local to nonlocal in a diffusion model
- PROC Home
- This Issue
-
Next Article
A model for stem cell population dynamics with regulated maturation delay
On the Glimm Functional for general hyperbolic systems
1. | Dipartimento di Matematica Pura ed Applicata, Via Trieste 63, I-35121, Padova, Italy, Italy |
[1] |
Stefano Bianchini. Interaction estimates and Glimm functional for general hyperbolic systems. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 133-166. doi: 10.3934/dcds.2003.9.133 |
[2] |
Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747 |
[3] |
N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079 |
[4] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[5] |
Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967 |
[6] |
Scipio Cuccagna, Masaya Maeda. On weak interaction between a ground state and a trapping potential. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3343-3376. doi: 10.3934/dcds.2015.35.3343 |
[7] |
Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949 |
[8] |
Wen-Xin Qin. Rotating modes in the Frenkel-Kontorova model with periodic interaction potential. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1147-1158. doi: 10.3934/dcds.2010.27.1147 |
[9] |
Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295 |
[10] |
Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79 |
[11] |
Paolo Baiti, Helge Kristian Jenssen. Blowup in $\mathbf{L^{\infty}}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 837-853. doi: 10.3934/dcds.2001.7.837 |
[12] |
Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133 |
[13] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[14] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann problems with indefinite potential and concave terms. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2561-2616. doi: 10.3934/cpaa.2015.14.2561 |
[15] |
Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51 |
[16] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
[17] |
Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028 |
[18] |
Matthew Nicol. Induced maps of hyperbolic Bernoulli systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 147-154. doi: 10.3934/dcds.2001.7.147 |
[19] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[20] |
Manuel Falconi, E. A. Lacomba, C. Vidal. The flow of classical mechanical cubic potential systems. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 827-842. doi: 10.3934/dcds.2004.11.827 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]