-
Previous Article
A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term
- PROC Home
- This Issue
-
Next Article
Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds
Cauchy problem for a class of nondiagonalizable hyperbolic systems
1. | Dipartimento di Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy, Italy |
[1] |
Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735 |
[2] |
Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77 |
[3] |
Mohammed Yusuf Waziri, Kabiru Ahmed, Abubakar Sani Halilu, Aliyu Mohammed Awwal. Modified Dai-Yuan iterative scheme for nonlinear systems and its application. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021044 |
[4] |
Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197 |
[5] |
Michel H. Geoffroy, Alain Piétrus. A fast iterative scheme for variational inclusions. Conference Publications, 2009, 2009 (Special) : 250-258. doi: 10.3934/proc.2009.2009.250 |
[6] |
Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153 |
[7] |
V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731 |
[8] |
Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915 |
[9] |
Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012 |
[10] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[11] |
Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3011-3033. doi: 10.3934/jimo.2019091 |
[12] |
Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005 |
[13] |
Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149 |
[14] |
Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753 |
[15] |
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1 |
[16] |
Morten Brøns. An iterative method for the canard explosion in general planar systems. Conference Publications, 2013, 2013 (special) : 77-83. doi: 10.3934/proc.2013.2013.77 |
[17] |
Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903 |
[18] |
Petr Kůrka. Iterative systems of real Möbius transformations. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567 |
[19] |
Heping Dong, Deyue Zhang, Yingwei Chi. An iterative scheme for imaging acoustic obstacle from phaseless total-field data. Inverse Problems and Imaging, 2022, 16 (4) : 925-942. doi: 10.3934/ipi.2022005 |
[20] |
Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]