• Previous Article
    A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term
  • PROC Home
  • This Issue
  • Next Article
    Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds
2011, 2011(Special): 533-542. doi: 10.3934/proc.2011.2011.533

Cauchy problem for a class of nondiagonalizable hyperbolic systems

1. 

Dipartimento di Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy, Italy

Received  July 2010 Revised  March 2011 Published  October 2011

We investigate the well-posedness of Cauchy problem for weakly hyperbolic systems in one space dimension with time dependent coecients in Sobolev spaces and in the $C^\infty$ category allowing nondiagonalizable principal parts and complex entries in the nilpotent part. We prove well-posedness results by means of an iterative approach under conditions linking the characteristic roots, the entries of the nilpotent part and of the zero order part.
Citation: Todor Gramchev, Nicola Orrú. Cauchy problem for a class of nondiagonalizable hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 533-542. doi: 10.3934/proc.2011.2011.533
[1]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[2]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure & Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[3]

Mohammed Yusuf Waziri, Kabiru Ahmed, Abubakar Sani Halilu, Aliyu Mohammed Awwal. Modified Dai-Yuan iterative scheme for nonlinear systems and its application. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021044

[4]

Viorel Niţică. Stable transitivity for extensions of hyperbolic systems by semidirect products of compact and nilpotent Lie groups. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1197-1204. doi: 10.3934/dcds.2011.29.1197

[5]

Michel H. Geoffroy, Alain Piétrus. A fast iterative scheme for variational inclusions. Conference Publications, 2009, 2009 (Special) : 250-258. doi: 10.3934/proc.2009.2009.250

[6]

Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021153

[7]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[8]

Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915

[9]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[10]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[11]

Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3011-3033. doi: 10.3934/jimo.2019091

[12]

Hawraa Alsayed, Hussein Fakih, Alain Miranville, Ali Wehbe. Finite difference scheme for 2D parabolic problem modelling electrostatic Micro-Electromechanical Systems. Electronic Research Announcements, 2019, 26: 54-71. doi: 10.3934/era.2019.26.005

[13]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[14]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[15]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[16]

Morten Brøns. An iterative method for the canard explosion in general planar systems. Conference Publications, 2013, 2013 (special) : 77-83. doi: 10.3934/proc.2013.2013.77

[17]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[18]

Petr Kůrka. Iterative systems of real Möbius transformations. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567

[19]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[20]

Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417

 Impact Factor: 

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]