• Previous Article
    Global existence for a functional reaction-diffusion problem from climate modeling
  • PROC Home
  • This Issue
  • Next Article
    Pohozaev-Ôtani type inequalities for weak solutions of quasilinear elliptic equations with homogeneous coefficients
2011, 2011(Special): 653-659. doi: 10.3934/proc.2011.2011.653

Critical second order operators on time scales

1. 

Department of Mathematics, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic

2. 

Department of Mathematics and Statistics, Falculty of Science Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic

Received  June 2010 Revised  March 2011 Published  October 2011

In this paper we introduce the concept of critical operators for dynamic operators of second order. Next, we show that an arbitrarily small (in a certain sense) negative perturbation of a non-negative critical operator leads to an operator which is no longer non-negative.
Citation: Petr Hasil, Petr Zemánek. Critical second order operators on time scales. Conference Publications, 2011, 2011 (Special) : 653-659. doi: 10.3934/proc.2011.2011.653
[1]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[2]

Yernat Assylbekov, Karthik Iyer. Determining rough first order perturbations of the polyharmonic operator. Inverse Problems and Imaging, 2019, 13 (5) : 1045-1066. doi: 10.3934/ipi.2019047

[3]

Leandro Cioletti, Artur O. Lopes. Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6139-6152. doi: 10.3934/dcds.2017264

[4]

Yulong Li, Aleksey S. Telyakovskiy, Emine Çelik. Analysis of one-sided 1-D fractional diffusion operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1673-1690. doi: 10.3934/cpaa.2022039

[5]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[6]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[7]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[8]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025

[9]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[10]

Jia Li. Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects. Mathematical Biosciences & Engineering, 2010, 7 (1) : 99-121. doi: 10.3934/mbe.2010.7.99

[11]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[12]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems and Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[13]

Yunmei Chen, Xianqi Li, Yuyuan Ouyang, Eduardo Pasiliao. Accelerated bregman operator splitting with backtracking. Inverse Problems and Imaging, 2017, 11 (6) : 1047-1070. doi: 10.3934/ipi.2017048

[14]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[15]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[16]

Tanja Eisner, Rainer Nagel. Arithmetic progressions -- an operator theoretic view. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 657-667. doi: 10.3934/dcdss.2013.6.657

[17]

Yucheng Bu, Yujun Dong. Existence of solutions for nonlinear operator equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4429-4441. doi: 10.3934/dcds.2019180

[18]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[19]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[20]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic and Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]