
Previous Article
The existence of time global solutions for tumor invasion models with constraints
 PROC Home
 This Issue

Next Article
Asymptotic behavior of Maxwell's equation in onespace dimension with thermal effect
Wellposedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions
1.  Institute of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria 
2.  Kerchof Hall , P. O. Box 400137, University of Virginia, Charlottesville, VA 229044137 
[1] 
Francis Ribaud, Stéphane Vento. Local and global wellposedness results for the BenjaminOnoZakharovKuznetsov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 449483. doi: 10.3934/dcds.2017019 
[2] 
Mohamad Darwich. Local and global wellposedness in the energy space for the dissipative ZakharovKuznetsov equation in 3D. Discrete and Continuous Dynamical Systems  B, 2020, 25 (9) : 37153724. doi: 10.3934/dcdsb.2020087 
[3] 
Stefan Meyer, Mathias Wilke. Global wellposedness and exponential stability for Kuznetsov's equation in $L_p$spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365378. doi: 10.3934/eect.2013.2.365 
[4] 
Adrien Dekkers, Anna RozanovaPierrat, Vladimir Khodygo. Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 42314258. doi: 10.3934/dcds.2020179 
[5] 
Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global wellposedness for the 3D ZakharovKuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems  S, 2016, 9 (6) : 17971851. doi: 10.3934/dcdss.2016075 
[6] 
Hartmut Pecher. Local wellposedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673685. doi: 10.3934/cpaa.2014.13.673 
[7] 
Lassaad Aloui, Slim Tayachi. Local wellposedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 54095437. doi: 10.3934/dcds.2021082 
[8] 
Boris Kolev. Local wellposedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167189. doi: 10.3934/jgm.2017007 
[9] 
Sergey Zelik, Jon Pennant. Global wellposedness in uniformly local spaces for the CahnHilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461480. doi: 10.3934/cpaa.2013.12.461 
[10] 
Keyan Wang. Global wellposedness for a transport equation with nonlocal velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 12031210. doi: 10.3934/cpaa.2008.7.1203 
[11] 
Nikolaos Bournaveas. Local wellposedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605616. doi: 10.3934/dcds.2008.20.605 
[12] 
Hartmut Pecher. Corrigendum of "Local wellposedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737742. doi: 10.3934/cpaa.2015.14.737 
[13] 
Takafumi Akahori. Low regularity global wellposedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure and Applied Analysis, 2010, 9 (2) : 261280. doi: 10.3934/cpaa.2010.9.261 
[14] 
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global wellposedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 3765. doi: 10.3934/dcds.2007.19.37 
[15] 
Zihua Guo, Yifei Wu. Global wellposedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 257264. doi: 10.3934/dcds.2017010 
[16] 
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global wellposedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure and Applied Analysis, 2007, 6 (4) : 10231041. doi: 10.3934/cpaa.2007.6.1023 
[17] 
Chao Yang. Sharp condition of global wellposedness for inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems  S, 2021, 14 (12) : 46314642. doi: 10.3934/dcdss.2021136 
[18] 
Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local wellposedness for the derivative nonlinear Schrödinger equation with $ L^2 $subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 42074253. doi: 10.3934/dcds.2021034 
[19] 
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local wellposedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837867. doi: 10.3934/krm.2020029 
[20] 
Jae Min Lee, Stephen C. Preston. Local wellposedness of the CamassaHolm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 32853299. doi: 10.3934/dcds.2017139 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]