
Previous Article
Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles
 PROC Home
 This Issue

Next Article
Coupled cell networks: Hopf bifurcation and interior symmetry
Characterisation of the asymptotic behaviour of scalar linear differential equations with respect to a fading stochastic perturbation
1.  Edgeworth Centre for Financial Mathematics, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland, Ireland 
2.  The University of the West Indies, Mona Campus, Department of Mathematics, Mona, Kingston 7, Jamaica 
[1] 
Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete & Continuous Dynamical Systems  B, 2020, 25 (9) : 36513657. doi: 10.3934/dcdsb.2020077 
[2] 
Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 20952113. doi: 10.3934/cpaa.2014.13.2095 
[3] 
Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 14771498. doi: 10.3934/mbe.2017077 
[4] 
Xiaobin Yao. Asymptotic behavior for stochastic plate equations with memory and additive noise on unbounded domains. Discrete & Continuous Dynamical Systems  B, 2022, 27 (1) : 443468. doi: 10.3934/dcdsb.2021050 
[5] 
Leonid Shaikhet. Behavior of solution of stochastic difference equation with continuous time under additive fading noise. Discrete & Continuous Dynamical Systems  B, 2022, 27 (1) : 301310. doi: 10.3934/dcdsb.2021043 
[6] 
G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified NavierStokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 25932621. doi: 10.3934/cpaa.2018123 
[7] 
PaoLiu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems  B, 2006, 6 (4) : 735749. doi: 10.3934/dcdsb.2006.6.735 
[8] 
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 31213135. doi: 10.3934/cpaa.2019140 
[9] 
Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and KelvinVoigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 18891917. doi: 10.3934/dcdsb.2018247 
[10] 
Meiyu Sui, Yejuan Wang, Peter E. Kloeden. Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29 (2) : 21872221. doi: 10.3934/era.2020112 
[11] 
Pierre Guiraud, Etienne Tanré. Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size. Discrete & Continuous Dynamical Systems  B, 2019, 24 (9) : 51835201. doi: 10.3934/dcdsb.2019056 
[12] 
Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete & Continuous Dynamical Systems  B, 2012, 17 (5) : 14411453. doi: 10.3934/dcdsb.2012.17.1441 
[13] 
Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems  B, 2010, 14 (2) : 439455. doi: 10.3934/dcdsb.2010.14.439 
[14] 
Hongyong Cui, Yangrong Li. Asymptotic $ H^2$ regularity of a stochastic reactiondiffusion equation. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021290 
[15] 
Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 18331848. doi: 10.3934/dcds.2018075 
[16] 
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the nonautonomous stochastic sineGordon equation on an unbounded domain. Evolution Equations & Control Theory, 2020, 9 (3) : 581604. doi: 10.3934/eect.2020025 
[17] 
Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323345. doi: 10.3934/mcrf.2013.3.323 
[18] 
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems  S, 2021, 14 (10) : 35293539. doi: 10.3934/dcdss.2020432 
[19] 
Yukang He, Zhengwen He, Nengmin Wang. Tabu search and simulated annealing for resourceconstrained multiproject scheduling to minimize maximal cash flow gap. Journal of Industrial & Management Optimization, 2021, 17 (5) : 24512474. doi: 10.3934/jimo.2020077 
[20] 
Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163173. doi: 10.3934/proc.2011.2011.163 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]