-
Previous Article
On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space
- PROC Home
- This Issue
-
Next Article
Investigation of the long-time evolution of localized solutions of a dispersive wave system
Optimal control of underactuated mechanical systems with symmetries
1. | Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Calle Nicolás Cabrera 15, 28049, Madrid, Spain |
2. | Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, UAM, C/Nicolás Cabrera, 15, 28049 Madrid |
References:
[1] |
A. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series vol.24, Springer-Verlag, New-York, 2003. |
[2] |
F. Bullo and A. Lewis, Geometric control of mechanical systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, Springer Verlang, New York, 2005. |
[3] |
H. Cendra, J. Marsden, T. Ratiu., Lagrangian reduction by stages. Memoirs of the American Mathematical Society, 152 (722). pp. 1-108. (2001) |
[4] |
L. Colombo and D. Martín de Diego, On the geometry of higher-order variational problems on Lie groups, arXiv:1104.3221v1 (2011). |
[5] |
A. Lewis, R. Murray, Variational principles for constrained systems: Theory and experiment. Int. J. nonlinear mech. 30 (1995), no. 6, 793-815. |
show all references
References:
[1] |
A. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series vol.24, Springer-Verlag, New-York, 2003. |
[2] |
F. Bullo and A. Lewis, Geometric control of mechanical systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics, Springer Verlang, New York, 2005. |
[3] |
H. Cendra, J. Marsden, T. Ratiu., Lagrangian reduction by stages. Memoirs of the American Mathematical Society, 152 (722). pp. 1-108. (2001) |
[4] |
L. Colombo and D. Martín de Diego, On the geometry of higher-order variational problems on Lie groups, arXiv:1104.3221v1 (2011). |
[5] |
A. Lewis, R. Murray, Variational principles for constrained systems: Theory and experiment. Int. J. nonlinear mech. 30 (1995), no. 6, 793-815. |
[1] |
Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261 |
[2] |
Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063 |
[3] |
Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377 |
[4] |
Sonia Martínez, Jorge Cortés, Francesco Bullo. A catalog of inverse-kinematics planners for underactuated systems on matrix groups. Journal of Geometric Mechanics, 2009, 1 (4) : 445-460. doi: 10.3934/jgm.2009.1.445 |
[5] |
David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics and Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57 |
[6] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[7] |
William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control and Related Fields, 2020, 10 (1) : 27-45. doi: 10.3934/mcrf.2019028 |
[8] |
Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial and Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311 |
[9] |
Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002 |
[10] |
Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367 |
[11] |
Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275 |
[12] |
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1 |
[13] |
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 |
[14] |
Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 107-127. doi: 10.3934/dcdsb.2015.20.107 |
[15] |
Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279 |
[16] |
Luca Galbusera, Sara Pasquali, Gianni Gilioli. Stability and optimal control for some classes of tritrophic systems. Mathematical Biosciences & Engineering, 2014, 11 (2) : 257-283. doi: 10.3934/mbe.2014.11.257 |
[17] |
Getachew K. Befekadu, Eduardo L. Pasiliao. On the hierarchical optimal control of a chain of distributed systems. Journal of Dynamics and Games, 2015, 2 (2) : 187-199. doi: 10.3934/jdg.2015.2.187 |
[18] |
Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535 |
[19] |
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure and Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541 |
[20] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]