\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space

Abstract Related Papers Cited by
  • We develop a lower and upper solution method for the Dirichlet problem associated with the prescribed mean curvature equation in Minkowski space \begin{equation*} \begin{cases} -{\rm div}\Big( \nabla u /\sqrt{1 - |\nabla u|^2}\Big)= f(x,u) & \hbox{ in } \Omega, \\ u=0& \hbox{ on } \partial \Omega. \end{cases} \end{equation*} Here $\Omega$ is a bounded regular domain in $\mathbb {R}^N$ and the function $f$ satisfies the Carathéodory conditions. The obtained results display various peculiarities due to the special features of the involved differential operator.
    Mathematics Subject Classification: Primary: 35J25; Secondary: 35J62, 35J75, 35J93, 35A01, 47H07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Bartnik and L. SimonSpacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys. 87 (1982/83), 131-152.

    [2]

    C. Bereanu, P. Jebelean, and P. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal. 264 (2013), 270-287.

    [3]

    C. Bereanu, P. Jebelean, and P. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal. 265 (2013), 644-659.

    [4]

    H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations 23 (2010), 801-810.

    [5]

    I. Coelho, C. Corsato, F. Obersnel, and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud. 12 (2012), 621-638.

    [6]

    I. Coelho, C. Corsato, and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal. (2013), in press. Available at: http://www.dmi.units.it/pubblicazioni/Quaderni_Matematici/624_2012.pdf

    [7]

    C. Corsato, F. Obersnel, P. Omari, and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl. 405 (2013) 227-239.

    [8]

    C. Gerhardt, $H$-surfaces in Lorentzian manifolds, Comm. Math. Phys. 89 (1983), 523-553.

    [9]

    J. Mawhin, Radial solutions of Neumann problem for periodic perturbations of the mean extrinsic curvature operator, Milan J. Math. 79 (2011), 95-112.

    [10]

    P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations 21 (1996), 721-733.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return