2013, 2013(special): 21-30. doi: 10.3934/proc.2013.2013.21

Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem

1. 

Departamento de Matemática Aplicada, Escuela Universitaria de Estadística, Universidad Complutense de Madrid, 28040 Madrid, Spain

2. 

Departamento de Matematica Aplicada, Facultad de Ciencias Matematicas, Plaza de Ciencias 3, Universidad Complutense de Madrid, 28040-MADRID

Received  August 2012 Revised  May 2013 Published  November 2013

This paper studies the existence of coexistence states in a spatially heterogeneous reaction diffusion system arising in nuclear dynamics. Essentially, it establishes the existence of an unbounded component $\mathfrak{C}_+$ of the set of coexistence states of the system bifurcating from the trivial steady state solution, and it characterizes the values of the parameters where $\mathfrak{C}_+$ bifurcates from the trivial solution and from infinity. Throughout this paper, by a component it is meant a closed and connected subset which is maximal for the inclusion.
Citation: Inmaculada Antón, Julián López-Gómez. Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 21-30. doi: 10.3934/proc.2013.2013.21
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Comm. Pure Appl. Maths. 12 (1959), 623-727.

[2]

H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.

[3]

G. Arioli, Long term dynamics of a reaction-diffusion system, J. Diff. Eqns. 235 (2007), 298-307.

[4]

H. Brézis, Analyse Fontionnelle, Masson, Paris, 1983.

[5]

S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Diff. Eqns. 178 (2002), 123-211.

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340.

[7]

E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc. 34 (2002), 533-538.

[8]

J. Esquinas and J. López-Gómez, Optimal multiplicity in local birfurcation theory, I: Generalized generic eigenvalues, J. Diff. Eqns. 71 (1988), 72-92.

[9]

W. E. Kastenberg and P. L. Chambré, On the stability of nonlinear space-dependent reactor kinectics, Nucl. Sci. Engrg. 31 (1968), 67-79.

[10]

J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Diff. Eqns. 127 (1996), 263-294.

[11]

J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Chapman & Hall/CRC Research Notes in Mathematics 426, Boca Raton, Florida, 2001.

[12]

J. López-Gómez, The steady-states of a non-cooperative model of nuclear reactors, J. Diff. Eqns. 246 (2009), 358-372.

[13]

J. López-Gómez, Elliptic Operators, World Scientific Publishing, Singapore, 2013.

[14]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Diff. Int. Eqns. 7 (1994), 383-398.

[15]

J. López-Gómez and M. Molina-Meyer, Bounded components of positive solutions of abstract fixed point equations: mushrooms, loops and isolas, J. Diff. Eqns. 209 (2005), 416-441.

[16]

J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators, Operator Theory: Advances and Applications Vol. 177, Birkhäuser, Springer, Basel-Boston-Berlin, 2007.

[17]

P. de Mottoni and A. Tesei, Asymptotic stability for a system of quasilinear parabolic equations, Appl. Ann. 9 (1979), 7-21.

[18]

R. Peng, D. Wei and G. Yang, Asymptotic behaviour, uniqueness and stability of coexistence states of a non-cooperative reaction diffusion model of nuclear reactors, Proc. Royal Soc. Edinburgh 140A (2010), 189-201.

[19]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.

[20]

F. Rothe, Global solutions of R-D systems, Springer, 1984.

[21]

W. Zhou, Uniqueness and asymptotic behavior of coexistence states for a non-cooperative model of nuclear reactors, Nonl. Anal. TMA 72 (2010), 2816-2820.

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Comm. Pure Appl. Maths. 12 (1959), 623-727.

[2]

H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.

[3]

G. Arioli, Long term dynamics of a reaction-diffusion system, J. Diff. Eqns. 235 (2007), 298-307.

[4]

H. Brézis, Analyse Fontionnelle, Masson, Paris, 1983.

[5]

S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Diff. Eqns. 178 (2002), 123-211.

[6]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340.

[7]

E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc. 34 (2002), 533-538.

[8]

J. Esquinas and J. López-Gómez, Optimal multiplicity in local birfurcation theory, I: Generalized generic eigenvalues, J. Diff. Eqns. 71 (1988), 72-92.

[9]

W. E. Kastenberg and P. L. Chambré, On the stability of nonlinear space-dependent reactor kinectics, Nucl. Sci. Engrg. 31 (1968), 67-79.

[10]

J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Diff. Eqns. 127 (1996), 263-294.

[11]

J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Chapman & Hall/CRC Research Notes in Mathematics 426, Boca Raton, Florida, 2001.

[12]

J. López-Gómez, The steady-states of a non-cooperative model of nuclear reactors, J. Diff. Eqns. 246 (2009), 358-372.

[13]

J. López-Gómez, Elliptic Operators, World Scientific Publishing, Singapore, 2013.

[14]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Diff. Int. Eqns. 7 (1994), 383-398.

[15]

J. López-Gómez and M. Molina-Meyer, Bounded components of positive solutions of abstract fixed point equations: mushrooms, loops and isolas, J. Diff. Eqns. 209 (2005), 416-441.

[16]

J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators, Operator Theory: Advances and Applications Vol. 177, Birkhäuser, Springer, Basel-Boston-Berlin, 2007.

[17]

P. de Mottoni and A. Tesei, Asymptotic stability for a system of quasilinear parabolic equations, Appl. Ann. 9 (1979), 7-21.

[18]

R. Peng, D. Wei and G. Yang, Asymptotic behaviour, uniqueness and stability of coexistence states of a non-cooperative reaction diffusion model of nuclear reactors, Proc. Royal Soc. Edinburgh 140A (2010), 189-201.

[19]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.

[20]

F. Rothe, Global solutions of R-D systems, Springer, 1984.

[21]

W. Zhou, Uniqueness and asymptotic behavior of coexistence states for a non-cooperative model of nuclear reactors, Nonl. Anal. TMA 72 (2010), 2816-2820.

[1]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[2]

Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107

[3]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[4]

Pablo Álvarez-Caudevilla, Julián López-Gómez. Characterizing the existence of coexistence states in a class of cooperative systems. Conference Publications, 2009, 2009 (Special) : 24-33. doi: 10.3934/proc.2009.2009.24

[5]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[6]

Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243

[7]

Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212

[8]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[9]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[10]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013

[11]

Michal Fečkan. Bifurcation from degenerate homoclinics in periodically forced systems. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 359-374. doi: 10.3934/dcds.1999.5.359

[12]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics. Conference Publications, 2013, 2013 (special) : 515-524. doi: 10.3934/proc.2013.2013.515

[13]

Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861

[14]

Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047

[15]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Spiraling bifurcation diagrams in superlinear indefinite problems. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1561-1588. doi: 10.3934/dcds.2015.35.1561

[16]

E. Kapsza, Gy. Károlyi, S. Kovács, G. Domokos. Regular and random patterns in complex bifurcation diagrams. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 519-540. doi: 10.3934/dcdsb.2003.3.519

[17]

Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297

[18]

Jean Dolbeault, Robert Stańczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 139-154. doi: 10.3934/dcds.2015.35.139

[19]

Lora Billings, Erik M. Bollt, David Morgan, Ira B. Schwartz. Stochastic global bifurcation in perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 123-132. doi: 10.3934/proc.2003.2003.123

[20]

M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133

 Impact Factor: 

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]