\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fast iteration of cocycles over rotations and computation of hyperbolic bundles

Abstract Related Papers Cited by
  • We present numerical algorithms that use small requirements of storage and operations to compute the iteration of cocycles over a rotation. We also show that these algorithms can be used to compute efficiently the stable and unstable bundles and the Lyapunov exponents of the cocycle.
    Mathematics Subject Classification: Primary: 70K43; Secondary: 37J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, "LAPACK user's guide'', 3rd edition, Software - Environments - Tools. 9. Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics, 1999.

    [2]

    J. Bourgain, "Green's function estimates for lattice Schrödinger operators and applications'', volume 158 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2005.

    [3]

    R. Calleja and R. de la Llave, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification, Nonlinearity, 23 (2010), 2029-2058.

    [4]

    L. Dieci and E. S. Van Vleck, Lyapunov spectral intervals: theory and computation, SIAM J. Numer. Anal., 40 (2002), 516-542.

    [5]

    J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.

    [6]

    L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, in "Smooth ergodic theory and its applications (Seattle, WA, 1999)'', Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, (2001), 679-705.

    [7]

    G. H. Golub and C. F. Van Loan, "Matrix computations'', Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, third edition, 1996.

    [8]

    À. Haro and R. d. l. Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8 pp.

    [9]

    À. Haro and R. d. l. Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.

    [10]

    A. Haro and R. d. l. Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results, J. Differential Equations, 228 (2006), 530-579.

    [11]

    A. Haro and R. de la Llave, A parameterization method for the computation of whiskers in quasi periodic maps: numerical implementation and examples, SIAM Jour. Appl. Dyn. Syst., 6 (2007), 142-207.

    [12]

    G. Huguet, R. de la Llave and Y. Sire, Computation of whiskered invariant tori and their associated manifolds: new fast algorithms, Discrete Contin. Dyn. Syst., 32 (2012), 1309-1353.

    [13]

    R. Krikorian, $C^0$-densité globale des systèmes produits-croisés sur le cercle r\'eductibles, Ergodic Theory Dynam. Systems, 19 (1999), 61-100.

    [14]

    R. Krikorian, "Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts'', Astérisque, (259):vi+216, 1999.

    [15]

    K. R. Meyer and G. R. Sell, Melnikov transforms, Bernoulli bundles, and almost periodic perturbations, Trans. Amer. Math. Soc., 314 (1989), 63-105.

    [16]

    V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210.

    [17]

    L. Pastur and A. Figotin, "Spectra of random and almost-periodic operators'', volume 297 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1992.

    [18]

    J. PuigReducibility of linear differential equations with quasi-periodic coefficients: a survey, preprint, mp_arc/02-246.

    [19]

    M. Rychlik, Renormalization of cocycles and linear ODE with almost-periodic coefficients, Invent. Math., 110 (1992), 173-206.

    [20]

    R. Sacker, Existence of dichotomies and invariant splittings for linear differential systems. IV, J. Differential Equations, 27 (1978), 106-137.

    [21]

    R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. I, J. Differential Equations, 15 (1974), 429-458.

    [22]

    R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. II, J. Differential Equations, 22 (1976), 478-496.

    [23]

    R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems. III, J. Differential Equations, 22 (1976), 497-522.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return