Citation: |
[1] |
H. Amann, "Linear and Quasi-linear Parabolic Problems, Volume I, Abstract Linear Theory'', Birkhäuser, Basel, 1995. |
[2] |
S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440. |
[3] |
S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations 252 (2012), 2469-2491. |
[4] |
S. Ishida, T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems, submitted. |
[5] |
T. Kawanago, Existence and behavior of solutions for $u_t=\Delta(u^m)+u^l$, Adv. Math. Sci. Appl. 7 (1997), 367-400. |
[6] |
E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415. |
[7] |
S. Luckhaus, Y. Sugiyama, Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems, M2AN Math. Model. Numer. Anal. 40 (2006), 597-621. |
[8] |
S. Luckhaus, Y. Sugiyama, Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases, Indiana Univ. Math. J. 56 (2007), 1279-1297. |
[9] |
Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations 20 (2007), 133-180. |
[10] |
Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), 333-364. |
[11] |
R. Suzuki, Existence and nonexistence of global solutions to quasilinear parabolic equations with convection, Hokkaido Mathematical Journal 27 (1998), 147-196. |