\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems

Abstract Related Papers Cited by
  • This paper deals with quasilinear degenerate Keller-Segel systems of parabolic-elliptic type. In this type, Sugiyama-Kunii [10] established the $L^r$-decay ($1\leq r<\infty$) of solutions with small initial data when $q\geq m+\frac{2}{N}$ ($m$ denotes the intensity of diffusion and $q$ denotes the nonlinearity). However, the $L^\infty$-decay property was not obtained yet. This paper gives the $L^\infty$-decay property in the super-critical case with small initial data.
    Mathematics Subject Classification: Primary: 35K57; Secondary: 35B33.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, "Linear and Quasi-linear Parabolic Problems, Volume I, Abstract Linear Theory'', Birkhäuser, Basel, 1995.

    [2]

    S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.

    [3]

    S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations 252 (2012), 2469-2491.

    [4]

    S. Ishida, T. YokotaRemarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems, submitted.

    [5]

    T. Kawanago, Existence and behavior of solutions for $u_t=\Delta(u^m)+u^l$, Adv. Math. Sci. Appl. 7 (1997), 367-400.

    [6]

    E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415.

    [7]

    S. Luckhaus, Y. Sugiyama, Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems, M2AN Math. Model. Numer. Anal. 40 (2006), 597-621.

    [8]

    S. Luckhaus, Y. Sugiyama, Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases, Indiana Univ. Math. J. 56 (2007), 1279-1297.

    [9]

    Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations 20 (2007), 133-180.

    [10]

    Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), 333-364.

    [11]

    R. Suzuki, Existence and nonexistence of global solutions to quasilinear parabolic equations with convection, Hokkaido Mathematical Journal 27 (1998), 147-196.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(82) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return