[1]

A. H. Nayfeh, "Introduction to Perturbation Technique," A WileyInterscience Publication. WileyInterscience [John Wiley & Sons], New York, 1981.

[2]

K. W. Chang and F. A. Howes, "Nonlinear Singular Perturbation Phenomena: Theory and Applications," Applied Mathematical Sciences, 56. SpringerVerlag, New York , 1984.

[3]

J. Kevorkian and J. D. Cole, "Multi Scale and Singular Perturbation Methods," Applied Mathematical Sciences, 114. SpringerVerlag, New York , 1996.

[4]

E.O'Riordan and M. Stynes, A uniformly accurate finite element method for a singularly perturbed onedimensional reaction diffusion problem, Math. Comput., 47 (1986), 555570.

[5]

R. Vulanovic, Fourth order algorithms for semilinear singular perturbation problems, Numer. Algorithms, 16 (1997), 117128.

[6]

R. K. Mohanty, N. Jha and D. J. Evans, capitalized., Spline in compression method for the numerical solution of singularly perturbed two point singular boundary value problems, Int. J. Comput. Math., 81 (2004), 615627.

[7]

M. Kumar, P. Singh and H. K. Mishra, capitalized., An initial value technique for singularly perturbed boundary value problems via cubic spline, Int. J. Comput. Meth. Eng. Sc. Mech., 8 (2007), 419427.

[8]

C. Y. Jung and R. Temam, Finite volume approximation of one dimensional stiff convectiondiffusion equation, J. Sci. Comput., 41 (2009), 384410.

[9]

R. Lin, A robust finite element method for singularly perturbed convectiondiffusion problems, Discrete Contin. Dyn. Syst., 9 (2009), 496505.

[10]

B. Lin, K. Li and Z. Cheng, Bspline solution of a singularly perturbed boundary value problem arising in biology, Chaos, Solitons Fractals, 42 (2009), 29342948.

[11]

F. Xie, On a class of singular boundary value problems with singular perturbation, J. Differential Equations, 252 (2012), 23702387.

[12]

I. A. Tirmizi, F. I. Haq and S. I. Islam, capitalized., Nonpolynomial spline solution of singularly perturbed boundary value problems, Appl. Math. Comput., 196 (2008), 616.

[13]

L. K. Bieniasz, Two new compact finite difference schemes for the solution of boundary value problems in second order nonlinear ordinary differential equations, using nonuniform grids, J. Comput. Methods Sci. Eng., 8 (2008), 318.

[14]

R. K. Mohanty, A class of nonuniform mesh three point arithmetic average discretizations for y"=f(x,y,y') and the estimates of y', Appl. Math. Comput., 183 (2006), 477485.

[15]

A. Khan, I. Khan and T. Aziz, Sextic spline solution of a singularly perturbed boundary value problems, Appl. Math. Comput., 181 (2006), 432439.

[16]

M. K. Kadalbajoo and R. K. Bawa, Variable mesh difference scheme for singularly perturbed boundary value problems using splines, J. Optim. Theory Appl., 90 (1996), 405416.

[17]

M. C. Natividad and M. Stynes, Richardson extrapolation for a convectiondiffusion problem using a Shishkin mesh, Appl. Numer. Math., 45 (2003), 315329.

[18]

C. E. Pearson, On nonlinear ordinary differential equations of boundary layer type, J. Math. Phy., 47 (1968), 351358.

[19]

M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed nonlinear two point boundary value problems by spline in compression, Int. J. Comput. Math., 79 (2002), 271288.
