2013, 2013(special): 355-363. doi: 10.3934/proc.2013.2013.355

Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization

1. 

Department of Mathematics, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi-110021, India

Received  September 2012 Published  November 2013

A general scheme for the numerical solution of nonlinear singular perturbation problems using nonpolynomial spline basis is proposed in the paper. The special non-equidistant formulation of mesh takes into account the boundary and interior layer structures. The proposed scheme is almost fourth order accurate and applicable to both singular and nonsingular cases. Convergence analysis of the scheme is briefly discussed. Maple program for the generation of difference scheme is presented. Computational illustrations characterized by boundary and interior layers show that the practical order of accuracy is close to the theoretical order of the method.
Citation: Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355
References:
[1]

A. H. Nayfeh, "Introduction to Perturbation Technique," A Wiley-Interscience Publication. Wiley-Interscience [John Wiley & Sons], New York, 1981.

[2]

K. W. Chang and F. A. Howes, "Nonlinear Singular Perturbation Phenomena: Theory and Applications," Applied Mathematical Sciences, 56. Springer-Verlag, New York , 1984.

[3]

J. Kevorkian and J. D. Cole, "Multi Scale and Singular Perturbation Methods," Applied Mathematical Sciences, 114. Springer-Verlag, New York , 1996.

[4]

E.O'Riordan and M. Stynes, A uniformly accurate finite element method for a singularly perturbed one-dimensional reaction diffusion problem, Math. Comput., 47 (1986), 555-570.

[5]

R. Vulanovic, Fourth order algorithms for semilinear singular perturbation problems, Numer. Algorithms, 16 (1997), 117-128.

[6]

R. K. Mohanty, N. Jha and D. J. Evans, capitalized., Spline in compression method for the numerical solution of singularly perturbed two point singular boundary value problems, Int. J. Comput. Math., 81 (2004), 615-627.

[7]

M. Kumar, P. Singh and H. K. Mishra, capitalized., An initial value technique for singularly perturbed boundary value problems via cubic spline, Int. J. Comput. Meth. Eng. Sc. Mech., 8 (2007), 419-427.

[8]

C. Y. Jung and R. Temam, Finite volume approximation of one dimensional stiff convection-diffusion equation, J. Sci. Comput., 41 (2009), 384-410.

[9]

R. Lin, A robust finite element method for singularly perturbed convection-diffusion problems, Discrete Contin. Dyn. Syst., 9 (2009), 496-505.

[10]

B. Lin, K. Li and Z. Cheng, B-spline solution of a singularly perturbed boundary value problem arising in biology, Chaos, Solitons Fractals, 42 (2009), 2934-2948.

[11]

F. Xie, On a class of singular boundary value problems with singular perturbation, J. Differential Equations, 252 (2012), 2370-2387.

[12]

I. A. Tirmizi, F. I. Haq and S. I. Islam, capitalized., Nonpolynomial spline solution of singularly perturbed boundary value problems, Appl. Math. Comput., 196 (2008), 6-16.

[13]

L. K. Bieniasz, Two new compact finite difference schemes for the solution of boundary value problems in second order nonlinear ordinary differential equations, using non-uniform grids, J. Comput. Methods Sci. Eng., 8 (2008), 3-18.

[14]

R. K. Mohanty, A class of non-uniform mesh three point arithmetic average discretizations for y"=f(x,y,y') and the estimates of y', Appl. Math. Comput., 183 (2006), 477-485.

[15]

A. Khan, I. Khan and T. Aziz, Sextic spline solution of a singularly perturbed boundary value problems, Appl. Math. Comput., 181 (2006), 432-439.

[16]

M. K. Kadalbajoo and R. K. Bawa, Variable mesh difference scheme for singularly perturbed boundary value problems using splines, J. Optim. Theory Appl., 90 (1996), 405-416.

[17]

M. C. Natividad and M. Stynes, Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh, Appl. Numer. Math., 45 (2003), 315-329.

[18]

C. E. Pearson, On non-linear ordinary differential equations of boundary layer type, J. Math. Phy., 47 (1968), 351-358.

[19]

M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed nonlinear two point boundary value problems by spline in compression, Int. J. Comput. Math., 79 (2002), 271-288.

show all references

References:
[1]

A. H. Nayfeh, "Introduction to Perturbation Technique," A Wiley-Interscience Publication. Wiley-Interscience [John Wiley & Sons], New York, 1981.

[2]

K. W. Chang and F. A. Howes, "Nonlinear Singular Perturbation Phenomena: Theory and Applications," Applied Mathematical Sciences, 56. Springer-Verlag, New York , 1984.

[3]

J. Kevorkian and J. D. Cole, "Multi Scale and Singular Perturbation Methods," Applied Mathematical Sciences, 114. Springer-Verlag, New York , 1996.

[4]

E.O'Riordan and M. Stynes, A uniformly accurate finite element method for a singularly perturbed one-dimensional reaction diffusion problem, Math. Comput., 47 (1986), 555-570.

[5]

R. Vulanovic, Fourth order algorithms for semilinear singular perturbation problems, Numer. Algorithms, 16 (1997), 117-128.

[6]

R. K. Mohanty, N. Jha and D. J. Evans, capitalized., Spline in compression method for the numerical solution of singularly perturbed two point singular boundary value problems, Int. J. Comput. Math., 81 (2004), 615-627.

[7]

M. Kumar, P. Singh and H. K. Mishra, capitalized., An initial value technique for singularly perturbed boundary value problems via cubic spline, Int. J. Comput. Meth. Eng. Sc. Mech., 8 (2007), 419-427.

[8]

C. Y. Jung and R. Temam, Finite volume approximation of one dimensional stiff convection-diffusion equation, J. Sci. Comput., 41 (2009), 384-410.

[9]

R. Lin, A robust finite element method for singularly perturbed convection-diffusion problems, Discrete Contin. Dyn. Syst., 9 (2009), 496-505.

[10]

B. Lin, K. Li and Z. Cheng, B-spline solution of a singularly perturbed boundary value problem arising in biology, Chaos, Solitons Fractals, 42 (2009), 2934-2948.

[11]

F. Xie, On a class of singular boundary value problems with singular perturbation, J. Differential Equations, 252 (2012), 2370-2387.

[12]

I. A. Tirmizi, F. I. Haq and S. I. Islam, capitalized., Nonpolynomial spline solution of singularly perturbed boundary value problems, Appl. Math. Comput., 196 (2008), 6-16.

[13]

L. K. Bieniasz, Two new compact finite difference schemes for the solution of boundary value problems in second order nonlinear ordinary differential equations, using non-uniform grids, J. Comput. Methods Sci. Eng., 8 (2008), 3-18.

[14]

R. K. Mohanty, A class of non-uniform mesh three point arithmetic average discretizations for y"=f(x,y,y') and the estimates of y', Appl. Math. Comput., 183 (2006), 477-485.

[15]

A. Khan, I. Khan and T. Aziz, Sextic spline solution of a singularly perturbed boundary value problems, Appl. Math. Comput., 181 (2006), 432-439.

[16]

M. K. Kadalbajoo and R. K. Bawa, Variable mesh difference scheme for singularly perturbed boundary value problems using splines, J. Optim. Theory Appl., 90 (1996), 405-416.

[17]

M. C. Natividad and M. Stynes, Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh, Appl. Numer. Math., 45 (2003), 315-329.

[18]

C. E. Pearson, On non-linear ordinary differential equations of boundary layer type, J. Math. Phy., 47 (1968), 351-358.

[19]

M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed nonlinear two point boundary value problems by spline in compression, Int. J. Comput. Math., 79 (2002), 271-288.

[1]

Xueying Wang, Drew Posny, Jin Wang. A reaction-convection-diffusion model for cholera spatial dynamics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2785-2809. doi: 10.3934/dcdsb.2016073

[2]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[3]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[4]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[5]

Zhijie Cao, Lijun Zhang. Symmetries and conservation laws of a time dependent nonlinear reaction-convection-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2703-2717. doi: 10.3934/dcdss.2020218

[6]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[7]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[8]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[9]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[10]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[11]

Igor Pažanin, Marcone C. Pereira. On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption. Communications on Pure and Applied Analysis, 2018, 17 (2) : 579-592. doi: 10.3934/cpaa.2018031

[12]

Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901

[13]

ShinJa Jeong, Mi-Young Kim. Computational aspects of the multiscale discontinuous Galerkin method for convection-diffusion-reaction problems. Electronic Research Archive, 2021, 29 (2) : 1991-2006. doi: 10.3934/era.2020101

[14]

Diego Berti, Andrea Corli, Luisa Malaguti. Wavefronts for degenerate diffusion-convection reaction equations with sign-changing diffusivity. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 6023-6046. doi: 10.3934/dcds.2021105

[15]

Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221

[16]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

[17]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[18]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2401-2426. doi: 10.3934/dcdsb.2021137

[19]

Wei Qu, Siu-Long Lei, Seak-Weng Vong. A note on the stability of a second order finite difference scheme for space fractional diffusion equations. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 317-325. doi: 10.3934/naco.2014.4.317

[20]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

 Impact Factor: 

Metrics

  • PDF downloads (117)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]