
Previous Article
Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion
 PROC Home
 This Issue

Next Article
A unified approach to Matukuma type equations on the hyperbolic space or on a sphere
The characterization of maximal invariant sets of nonlinear discretetime control dynamical systems
1.  Department of Mathematics and Information Sciences, University of North Texas at Dallas, Dallas, TX 75241, United States 
2.  Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200  465 Porto, Portugal 
References:
show all references
References:
[1] 
Noriaki Kawaguchi. Maximal chain continuous factor. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 59155942. doi: 10.3934/dcds.2021101 
[2] 
Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369380. doi: 10.3934/mbe.2015007 
[3] 
Hitoshi Ishii, Paola Loreti, Maria Elisabetta Tessitore. A PDE approach to stochastic invariance. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 651664. doi: 10.3934/dcds.2000.6.651 
[4] 
Jacky Cresson, Bénédicte Puig, Stefanie Sonner. Stochastic models in biology and the invariance problem. Discrete and Continuous Dynamical Systems  B, 2016, 21 (7) : 21452168. doi: 10.3934/dcdsb.2016041 
[5] 
Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 97136. doi: 10.3934/dcds.2016.36.97 
[6] 
XingFu Zhong. Variational principles of invariance pressures on partitions. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 491508. doi: 10.3934/dcds.2020019 
[7] 
Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete and Continuous Dynamical Systems  B, 2019, 24 (8) : 36533666. doi: 10.3934/dcdsb.2018309 
[8] 
Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169186. doi: 10.3934/dcds.2011.30.169 
[9] 
Robert Jarrow, Philip Protter, Jaime San Martin. Asset price bubbles: Invariance theorems. Frontiers of Mathematical Finance, , () : . doi: 10.3934/fmf.2021006 
[10] 
Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91113. doi: 10.3934/dcds.2001.7.91 
[11] 
Stefano Galatolo. Orbit complexity and data compression. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 477486. doi: 10.3934/dcds.2001.7.477 
[12] 
Peng Sun. Minimality and gluing orbit property. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 40414056. doi: 10.3934/dcds.2019162 
[13] 
Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113130. doi: 10.3934/amc.2016.10.113 
[14] 
Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reactiondiffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 4356. doi: 10.3934/eect.2012.1.43 
[15] 
Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for nonLipschitz dynamics. Communications on Pure and Applied Analysis, 2006, 5 (1) : 107124. doi: 10.3934/cpaa.2006.5.107 
[16] 
Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179189. doi: 10.3934/jcd.2016009 
[17] 
Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete and Continuous Dynamical Systems  B, 2013, 18 (6) : 15331554. doi: 10.3934/dcdsb.2013.18.1533 
[18] 
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 37593779. doi: 10.3934/dcds.2021015 
[19] 
Heide GluesingLuerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177197. doi: 10.3934/amc.2015.9.177 
[20] 
Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete and Continuous Dynamical Systems  S, 2009, 2 (2) : 221238. doi: 10.3934/dcdss.2009.2.221 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]