\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quasi-subdifferential operators and evolution equations

Abstract Related Papers Cited by
  • We introduce the concept of a quasi-subdifferential operator and that of a quasi-subdifferential evolution equation. We prove the existence of solutions to related problems and give applications to variational and quasi-variational inequalities.
    Mathematics Subject Classification: Primary: 47J20, 47J35; Secondary 35J87, 35K86.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Aiki, Mathematical models including a hysteresis operator, in "Dissipative phase transitions" (eds. P. Colli et al.), Ser. Adv. Math. Appl. Sci. 71 (2006), 1-20.

    [2]

    H. Attouch, Familles d'operateurs maximaux monotones et mesurabilite, Ann. Mat. Pura Appl. 120 (1979), 35-111.

    [3]

    H. Attouch, P. Bénilan, A. Damlamian, C. Picard, Equations d'évolution avec condition unilatérale, C. R. Acad. Sci. Paris Ser. A, 279 (1974), 607-609.

    [4]

    C. Baiocchi and A. Capelo, "Variational and quasivariational inequalities", Wiley-Interscience, Chichester, 1984.

    [5]

    H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriel en dualité, Ann. Inst. Fourier, 18 (1968), 115-175.

    [6]

    H. Brézis, Problèmes unilatéraux, J. Math. Pure Appl. IX. Ser., 51 (1972), 1-168.

    [7]

    H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert", North-Holland, Amsterdam-London, 1973.

    [8]

    F. E. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal., 11 (1972), 251-294.

    [9]

    P. Colli, N. Kenmochi and M. Kubo, A phase-field model with temperature dependent constraint, J. Math. Anal. Appl., 256 (2001), 668-685.

    [10]

    J.-L. Joly and U. Mosco, À propos de l'existence et de la régularité des solutions de certaines inéquations quasi-variationnelles, J. Funct. Anal., 34 (1979), 107-137.

    [11]

    R. Kano, N. Kenmochi and Y. Murase, Elliptic quasi-variational inequalities and applications, Discrete Contin. Dyn. Syst., 2009 Suppl. (2009), 583-591.

    [12]

    R. Kano, N. Kenmochi and Y. Murase, Parabolic quasi-variational inequalities with nonlocal constraints, Adv. Math. Sci. Appl., 19 (2009), 565-583 .

    [13]

    R. Kano, Y. Murase and N. Kenmochi, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints Banach Center Publ., 86, Warsaw, 2009, 175-194.

    [14]

    N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304-331.

    [15]

    N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Educ., Chiba Univ. Part II, 30 (1981), 1-87.

    [16]

    N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities in "Handbook of Differential Equations" Stationary Partial Differential Equations, Vol. IV (ed. M. Chipot), Elsevier/North Holland, Amsterdam, (2007).

    [17]

    N. Kenmochi, T. Koyama and G.H. Meyer, Parabolic PDEs with hysteresis and quasivariational inequalities, Nonlinear Anal., 34 (1998), 665-686.

    [18]

    N. Kenmochi and M. Kubo, Periodic stability of flow in partially saturated porous media, in ''Free Boundary Value Problems", Int. Ser. Numer. Math., 95 (1990), 127-152.

    [19]

    M. Kubo, Characterization of a class of evolution operators generated by time-dependent subdifferentials, Funkc. Ekvacioj, 32 (1989), 301-321.

    [20]

    M. Kubo, A filtration model with hysteresis, J. Differ. Equations, 201 (2004), 75-98.

    [21]

    M. Kubo and N. Yamazaki, Quasilinear parabolic variational inequalities with time-dependent constraints, Adv. Math. Sci. Appl., 15 (2005), 60-68.

    [22]

    M. Kubo and N. Yamazaki, Elliptic-parabolic variational inequalities with time-dependent constraints, Discrete Contin. Dyn. Syst., 19 (2007), 335-354.

    [23]

    M. Kubo, K. Shirakawa and N. Yamazaki, Variational inequalities for a system of elliptic-parabolic equations, J. Math. Anal. Appl., 387 (2012), 490-511.

    [24]

    M. Ôtani, Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators J. Differential Equations, 46 (1982), 268-299.

    [25]

    M. ÔtaniNonlinear evolution equations with time-dependent constarints Adv. Math. Sci. Appl., 3 (1993/94), 383-399.

    [26]

    A. Visintin, "Differential models of hysteresis", Springer-Verlag, Berlin, 1994.

    [27]

    N. Yamazaki, Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems, Discrete Contin. Dyn. Syst., 2005 Suppl. (2005), 920-920.

    [28]

    Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci., Univ. Tokyo, Sect. IA, 23 (1976), 491-515.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(43) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return