Citation: |
[1] |
M. Hildebrand, "Selbstorganisierte nanostrukturen in katakyschen oberflächenreaktionen," D. dissertation, Mathematisch-Naturwissenschaftlichen Fakultät I, Humboldt-Universität, Berlin, 1999. |
[2] |
M. Hildebrand, M. Kuperman, H. Wio, A. S. Mikhailov and G. Ertl, Self-organized chemical nanoscale microreactors, Phys. Rev. Lett., 83 (1999), 1475-1478. |
[3] |
K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: I. Existence, Discrete Continuous Dynam. Systems - B, 14 (2010), 1105-1117. |
[4] |
K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system, Nonlinearity, 26 (2013), 1313-1343. |
[5] |
K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for generalized Allen-Cahn equations with nonlocal constraint, preprint. |
[6] |
Y. Mori, A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys. J., 94 (2008), 3684-3697. |
[7] |
Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427. |
[8] |
R. Schaaf, "Global solution branches of two-point boundary value problems," Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990. |
[9] |
J. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354 (2002), 3117-3154. |
[10] |
J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290. |