\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation structure of steady-states for bistable equations with nonlocal constraint

Abstract Related Papers Cited by
  • This paper studies the 1D Neumann problem of bistable equations with nonlocal constraint. We obtain the global bifurcation structure of solutions by a level set analysis for the associate integral mapping. This structure implies that solutions can form a saddle-node bifurcation curve connecting boundary-layer states with internal-layer states. Furthermore, we exhibit the applications of our result to a couple of shadow systems arising in surface chemistry and physiology.
    Mathematics Subject Classification: Primary: 34B18; Secondary: 34C23, 34E20, 37G10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Hildebrand, "Selbstorganisierte nanostrukturen in katakyschen oberflächenreaktionen," D. dissertation, Mathematisch-Naturwissenschaftlichen Fakultät I, Humboldt-Universität, Berlin, 1999.

    [2]

    M. Hildebrand, M. Kuperman, H. Wio, A. S. Mikhailov and G. Ertl, Self-organized chemical nanoscale microreactors, Phys. Rev. Lett., 83 (1999), 1475-1478.

    [3]

    K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: I. Existence, Discrete Continuous Dynam. Systems - B, 14 (2010), 1105-1117.

    [4]

    K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system, Nonlinearity, 26 (2013), 1313-1343.

    [5]

    K. Kuto and T. TsujikawaBifurcation structure of steady-states for generalized Allen-Cahn equations with nonlocal constraint, preprint.

    [6]

    Y. Mori, A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys. J., 94 (2008), 3684-3697.

    [7]

    Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427.

    [8]

    R. Schaaf, "Global solution branches of two-point boundary value problems," Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990.

    [9]

    J. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354 (2002), 3117-3154.

    [10]

    J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return