
Previous Article
Intricate bifurcation diagrams for a class of onedimensional superlinear indefinite problems of interest in population dynamics
 PROC Home
 This Issue

Next Article
A discontinuous Galerkin leastsquares finite element method for solving Fisher's equation
Discretizing spherical integrals and its applications
1.  Institute for Information and System Sciences, School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China, China 
2.  Department of Mathematics, Missouri State University, Springeld, MO 65810, United States 
References:
show all references
References:
[1] 
Susanna V. Haziot. On the spherical geopotential approximation for Saturn. Communications on Pure and Applied Analysis, 2022, 21 (7) : 23272336. doi: 10.3934/cpaa.2022035 
[2] 
Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic and Related Models, 2011, 4 (4) : 10631079. doi: 10.3934/krm.2011.4.1063 
[3] 
Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear FredholmVolterra integral equations. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 7788. doi: 10.3934/naco.2017004 
[4] 
Djemaa Messaoudi, Osama Said Ahmed, Komivi Souley Agbodjan, Ting Cheng, Daijun Jiang. Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation. Inverse Problems and Imaging, 2020, 14 (5) : 797818. doi: 10.3934/ipi.2020037 
[5] 
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131149. doi: 10.3934/amc.2007.1.131 
[6] 
Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $means problem with penalty. Journal of Industrial and Management Optimization, 2022, 18 (4) : 22772287. doi: 10.3934/jimo.2021067 
[7] 
Vikas S. Krishnamurthy. The vorticity equation on a rotating sphere and the shallow fluid approximation. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 62616276. doi: 10.3934/dcds.2019273 
[8] 
Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310318. doi: 10.3934/proc.2001.2001.310 
[9] 
Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119130. doi: 10.3934/era.2011.18.119 
[10] 
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 20472051. doi: 10.3934/cpaa.2017100 
[11] 
Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems and Imaging, 2013, 7 (1) : 243252. doi: 10.3934/ipi.2013.7.243 
[12] 
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373382. doi: 10.3934/ipi.2009.3.373 
[13] 
Peter Boyvalenkov, Maya Stoyanova. New nonexistence results for spherical designs. Advances in Mathematics of Communications, 2013, 7 (3) : 279292. doi: 10.3934/amc.2013.7.279 
[14] 
AnneSophie de Suzzoni. Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space. Communications on Pure and Applied Analysis, 2014, 13 (3) : 9911015. doi: 10.3934/cpaa.2014.13.991 
[15] 
Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterrafredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209219. doi: 10.3934/mfc.2021013 
[16] 
Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure and Applied Analysis, 2007, 6 (3) : 569585. doi: 10.3934/cpaa.2007.6.569 
[17] 
François Alouges, Sylvain Faure, Jutta Steiner. The vortex core structure inside spherical ferromagnetic particles. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 12591282. doi: 10.3934/dcds.2010.27.1259 
[18] 
Marcin Bugdoł, Tadeusz Nadzieja. A nonlocal problem describing spherical system of stars. Discrete and Continuous Dynamical Systems  B, 2014, 19 (8) : 24172423. doi: 10.3934/dcdsb.2014.19.2417 
[19] 
C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure and Applied Analysis, 2010, 9 (5) : 11891208. doi: 10.3934/cpaa.2010.9.1189 
[20] 
Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic and Related Models, 2018, 11 (1) : 123. doi: 10.3934/krm.2018001 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]