\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Attractors for weakly damped beam equations with $p$-Laplacian

Abstract Related Papers Cited by
  • This paper is concerned with a class of weakly damped one-dimensional beam equations with lower order perturbation of $p$-Laplacian type $$ u_{tt} + u_{xxxx} - (\sigma(u_x))_x + ku_t + f(u)= h \quad \hbox{in} \quad (0,L) \times \mathbb{R}^{+} , $$ where $\sigma(z)=|z|^{p-2}z$, $p \ge 2$, $k>0$ and $f(u)$ and $h(x)$ are forcing terms. Well-posedness, exponential stability and existence of a finite-dimensional attractor are proved.
    Mathematics Subject Classification: Primary: 35L75, 35B40; Secondary: 74J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. An and A. Peirce, A weakly nonlinear analysis of elasto-plastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.

    [2]

    D. Andrade, M. A. Jorge Silva and T. F. Ma, Exponential stability for a plate equation with $p$-Laplacian and memory terms, Math. Meth. Appl. Sci., 35 (2012), 417-426.

    [3]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,'' Studies in Mathematics and its Application 25, North-Holland, Amsterdam, 1992.

    [4]

    I. Chueshov and I. Lasiecka, "Von Karman Evolution Equations, Well-Posedness and Long-Time Dynamics,'' Springer Monographs in Mathematics, Springer, New York, 2010.

    [5]

    I. Chueshov and I. Lasiecka, Existence, uniqueness of weakly solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.

    [6]

    I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-99.

    [7]

    J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'' Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, 1988.

    [8]

    J. U. Kim, A boundary thin obstacle problem for a wave equation, Comm. Partial Differential Equations, 14 (1989), 1011-1026.

    [9]

    O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,'' Cambridge University Press, 1991.

    [10]

    J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,'' Dunod Gauthier-Villars, Paris, 1969.

    [11]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,'' Applied Mathematical Sciences 68, Springer-Verlag, New York, 1988.

    [12]

    Yang Zhijian, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.

    [13]

    Yang Zhijian, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow, Math. Meth. Appl. Sci., 32 (2009), 1082-1104.

    [14]

    Yang Zhijian, Finite-dimensional attractors for the Kirchhoff models, J. Math. Phys., 51 092703 (2010), 25 pp.

    [15]

    Yang Zhijian and Jin Baoxia, Global attractor for a class of Kirchhoff models, J. Math. Phys., 50 032701 (2009), 29 pp.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return