-
Previous Article
Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum
- PROC Home
- This Issue
-
Next Article
Efficient recurrence relations for univariate and multivariate Taylor series coefficients
Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response
1. | Department of Applied Mathematics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan |
References:
show all references
References:
[1] |
Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536 |
[2] |
Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063 |
[3] |
Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117 |
[4] |
Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3913-3931. doi: 10.3934/dcdsb.2021211 |
[5] |
Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 |
[6] |
Na Min, Mingxin Wang. Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1721-1737. doi: 10.3934/dcdsb.2018073 |
[7] |
Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159 |
[8] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
[9] |
Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035 |
[10] |
Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173 |
[11] |
Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228 |
[12] |
Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177 |
[13] |
Jian Zu, Wendi Wang, Bo Zu. Evolutionary dynamics of prey-predator systems with Holling type II functional response. Mathematical Biosciences & Engineering, 2007, 4 (2) : 221-237. doi: 10.3934/mbe.2007.4.221 |
[14] |
Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 |
[15] |
Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607 |
[16] |
Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 |
[17] |
Yanlin Zhang, Qi Cheng, Shengfu Deng. Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022065 |
[18] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[19] |
Siyu Liu, Haomin Huang, Mingxin Wang. A free boundary problem for a prey-predator model with degenerate diffusion and predator-stage structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1649-1670. doi: 10.3934/dcdsb.2019245 |
[20] |
Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]