
Previous Article
Analysis of a mathematical model for jellyfish blooms and the cambric fish invasion
 PROC Home
 This Issue

Next Article
Parameter dependent stability/instability in a human respiratory control system model
Dynamically consistent discretetime SI and SIS epidemic models
1.  Department of Mathematics and Statistics, Box 41042, Texas Tech University, Lubbock, TX 794091042, United States 
References:
show all references
References:
[1] 
Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discretetime SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699710. doi: 10.3934/mbe.2007.4.699 
[2] 
John E. Franke, AbdulAziz Yakubu. Periodically forced discretetime SIS epidemic model with disease induced mortality. Mathematical Biosciences & Engineering, 2011, 8 (2) : 385408. doi: 10.3934/mbe.2011.8.385 
[3] 
Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistencetime estimation for some stochastic SIS epidemic models. Discrete and Continuous Dynamical Systems  B, 2015, 20 (9) : 29332947. doi: 10.3934/dcdsb.2015.20.2933 
[4] 
LihIng W. Roeger, Razvan Gelca. Dynamically consistent discretetime LotkaVolterra competition models. Conference Publications, 2009, 2009 (Special) : 650658. doi: 10.3934/proc.2009.2009.650 
[5] 
Abhyudai Singh, Roger M. Nisbet. Variation in risk in singlespecies discretetime models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859875. doi: 10.3934/mbe.2008.5.859 
[6] 
LihIng W. Roeger. Dynamically consistent discrete LotkaVolterra competition models derived from nonstandard finitedifference schemes. Discrete and Continuous Dynamical Systems  B, 2008, 9 (2) : 415429. doi: 10.3934/dcdsb.2008.9.415 
[7] 
Carlos M. HernándezSuárez, Carlos CastilloChavez, Osval Montesinos López, Karla HernándezCuevas. An application of queuing theory to SIS and SEIS epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (4) : 809823. doi: 10.3934/mbe.2010.7.809 
[8] 
Fred Brauer, Zhilan Feng, Carlos CastilloChávez. Discrete epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (1) : 115. doi: 10.3934/mbe.2010.7.1 
[9] 
Carlos Lizama, Marina MurilloArcila. Discrete maximal regularity for volterra equations and nonlocal timestepping schemes. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 509528. doi: 10.3934/dcds.2020020 
[10] 
Yicang Zhou, Paolo Fergola. Dynamics of a discrete agestructured SIS models. Discrete and Continuous Dynamical Systems  B, 2004, 4 (3) : 841850. doi: 10.3934/dcdsb.2004.4.841 
[11] 
Jianquan Li, Zhien Ma. Stability analysis for SIS epidemic models with vaccination and constant population size. Discrete and Continuous Dynamical Systems  B, 2004, 4 (3) : 635642. doi: 10.3934/dcdsb.2004.4.635 
[12] 
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discretetime semiMarkov processes. Discrete and Continuous Dynamical Systems  B, 2021, 26 (3) : 14991529. doi: 10.3934/dcdsb.2020170 
[13] 
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by GLévy process with discretetime feedback control. Discrete and Continuous Dynamical Systems  B, 2021, 26 (2) : 755774. doi: 10.3934/dcdsb.2020133 
[14] 
Yijun Lou, XiaoQiang Zhao. Threshold dynamics in a timedelayed periodic SIS epidemic model. Discrete and Continuous Dynamical Systems  B, 2009, 12 (1) : 169186. doi: 10.3934/dcdsb.2009.12.169 
[15] 
Yicang Zhou, Zhien Ma. Global stability of a class of discrete agestructured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409425. doi: 10.3934/mbe.2009.6.409 
[16] 
Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347361. doi: 10.3934/mbe.2010.7.347 
[17] 
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discretetime state observations. Discrete and Continuous Dynamical Systems  B, 2017, 22 (1) : 209226. doi: 10.3934/dcdsb.2017011 
[18] 
Eduardo Liz. A new flexible discretetime model for stable populations. Discrete and Continuous Dynamical Systems  B, 2018, 23 (6) : 24872498. doi: 10.3934/dcdsb.2018066 
[19] 
Ming Chen, Hao Wang. Dynamics of a discretetime stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems  B, 2021, 26 (1) : 107120. doi: 10.3934/dcdsb.2020264 
[20] 
Ciprian Preda. Discretetime theorems for the dichotomy of oneparameter semigroups. Communications on Pure and Applied Analysis, 2008, 7 (2) : 457463. doi: 10.3934/cpaa.2008.7.457 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]