[1]

E. Allen, "Modeling with Stochastic Differential Equations," SpringerVerlag, New York, 2007.

[2]

L. Arnold, "Stochastic Differential Equations," John Wiley & Sons, Inc., New York, 1974

[3]

A. Bensoussan and R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I. (in French), Israel J. Math., 11 (1972) 95129.

[4]

A. Bensoussan, Some existence results for stochastic partial differential equations, in Stochastic partial differential equations and applications, (Trento, 1990), p. 3753, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992.

[5]

P.L. Chow, "Stochastic Partial Differential Equations," Chapman & Hall/CRC, Boca Raton, FL, 2007.

[6]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, Cambridge, 1992.

[7]

G. Da Prato and J. Zabzcyk, "Ergodicity for Infinite Dimensional Systems," Cambridge University Press, Cambridge, 1996.

[8]

L.C. Evans, "Partial Differential Equations," AMS, Providence, 2010.

[9]

T.C. Gard, "Introduction to Stochastic Differential Equations," Marcel Dekker, Basel, 1988.

[10]

W. Grecksch and C. Tudor, "Stochastic Evolution Equations. A Hilbert space approach," AkademieVerlag, Berlin, 1995.

[11]

A.L. Hodgkin and W.A.H. Rushton, The electrical constants of a crustacean nerve fibre, Proc. Roy. Soc. London. B 133 (1946) 444479.

[12]

R.Z. Khasminskiĭ, "Stochastic Stability of Differential Equations," Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.

[13]

C. Koch, "Biophysics of Computation: Information Processing in Single Neurons," Oxford U. Press, Oxford, 1999.

[14]

C. Koch and I. Segev, "Methods in Neuronal Modeling: From Ions to Networks (2nd edition)," MIT Press, Cambridge, MA, 1998.

[15]

E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones, PhD. Thesis, U. Paris XI, 1975.

[16]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3 (1979), no. 2, 127167.

[17]

B.L. Rozovskii, "Stochastic Evolution Systems," Kluwer, Dordrecht, 1990.

[18]

H. Schurz, "Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochastic Differential Equations and Applications'', LogosVerlag, Berlin, 1997.

[19]

H. Schurz, Nonlinear stochastic wave equations in $\mathbbR^1$ with powerlaw nonlinearity and additive spacetime noise, Contemp. Math., 440 (2007), 223242.

[20]

H. Schurz, Existence and uniqueness of solutions of semilinear stochastic infinitedimensional differential systems with Hregular noise, J. Math. Anal. Appl., 332 (1) (2007), 334345.

[21]

H. Schurz, Analysis and discretization of semilinear stochastic wave equations with cubic nonlinearity and additive spacetime noise, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), no. 2, 353363.

[22]

H. Schurz, Nonlinear stochastic heat equations with cubic nonlinearities and additive Qregular noise in $\mathbbR^1$, Electron. J. Differ. Equ. Conf., 19 (2010), 221233.

[23]

A.N. Shiryaev, "Probability," SpringerVerlag, Berlin, 1996.

[24]

G.J. Stuart and B. Sakmann, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature 367 (1994) 6972.

[25]

H.C. Tuckwell and J.B. Walsh, Random currents through nerve membranes. I. Uniform poisson or white noise current in onedimensional cables, Biol. Cybern., 49 (1983), no. 2, 99110.

[26]

C. Tudor, On stochastic evolution equations driven by continuous semimartingales, Stochastics 23 (1988), no. 2, 179195.

[27]

J.B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., 1180, Springer, BerlinNew York, 1986, 265439.

[28]

J.B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Anal., 23 (2005), no. 1, 143.
