    2013, 2013(special): 729-736. doi: 10.3934/proc.2013.2013.729

## Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data

 1 Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585

Received  August 2012 Revised  March 2013 Published  November 2013

Let $\Omega \subset \mathbb{R}^2$ be a smooth bounded domain and let $\Gamma = \left \{ p_1, \cdots, p_N \right \} \subset \Omega$ be the set of prescribed points. Consider the Liouville type equation $-\delta u = \lambda \Pi_{j = 1}^{N} |x - p_j|^{2\alpha_j} V(x) e^u \quad \mbox{in} \; \Omega, \quad u = 0 \quad \mbox{on} \; \partial \Omega,$ where $\alpha_j \; (j=1,\cdots, N)$ are positive numbers, $V(x) > 0$ is a given smooth function on $\bar{\Omega}$, and $\lambda > 0$ is a parameter. Let $\{ u_n \}$ be a blowing up solution sequence for $\lambda = \lambda_n \downarrow 0$ having the $m$-points blow up set $S = \{ q_1, \cdots, q_m \} \subset \Omega$, i.e., $\lambda_n \prod_{j = 1}^N |x - p_j|^{2 \alpha_j} V(x) e^{u_n} dx \rightharpoonup \sum_{i=1}^m b_i \delta_{q_i}$ in the sense of measures, where $b_i = 8\pi$ if $q_i \notin \Gamma$, $b_i = 8\pi(1 + \alpha_j)$ if $q_i = p_j$ for some $p_j \in \Gamma$. We show that the number of blow up points $m$ is less than or equal to the Morse index of $u_n$ for $n$ sufficiently large, provided $\alpha_j \in (0,+\infty) \setminus \mathbb{N}$ for all $j = 1, \cdots, N$. This is a generalization of the result  in which nonsingular case ($\alpha_j = 0$ for all $j$) was studied.
Citation: Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729
##### References:
  D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 no. 7-8 (2004), 1241-1265.  D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula, J. Differential Equations 185 (2002), 161-180.  D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory, Comm. Math. Pfys. 229 (2002), 3-47.  H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253.  P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions, Ph. D. thesis, Universitá degli Studi Roma "Tor Vergata", Roma, Italy, 2003. P. Esposito:, Blowup solutions for a Liouville equation with singular data, SIAM. J. Math. Anal. 36 (2005), 1310-1345.  P. Esposito:, Blowup solutions for a Liouville equation with singular data, in Proceedings of the International Conference " Recent Advances in Elliptic and Parabolic Problems" (C.C. Chen, M. Chipot, C.S. Lin (ed.)), World Scientific, (2005), 61-79.  Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270.  L. Ma, and J. Wei:, Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001), 506-514.  K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990), 173-188.  J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh 131 A (2001), 967-985.  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension, Advances in Nonlinear Stud. 12 no.1, (2012), 115-122.  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., (). G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach," Progress in Nonlinear Differential Equations and Their Applications 72, Birkhäuser, Boston (2008)  Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis," Springer Monographs in Mathematics, Springer-Verlag, New York (2001)  show all references

##### References:
  D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 no. 7-8 (2004), 1241-1265.  D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula, J. Differential Equations 185 (2002), 161-180.  D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory, Comm. Math. Pfys. 229 (2002), 3-47.  H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253.  P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions, Ph. D. thesis, Universitá degli Studi Roma "Tor Vergata", Roma, Italy, 2003. P. Esposito:, Blowup solutions for a Liouville equation with singular data, SIAM. J. Math. Anal. 36 (2005), 1310-1345.  P. Esposito:, Blowup solutions for a Liouville equation with singular data, in Proceedings of the International Conference " Recent Advances in Elliptic and Parabolic Problems" (C.C. Chen, M. Chipot, C.S. Lin (ed.)), World Scientific, (2005), 61-79.  Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270.  L. Ma, and J. Wei:, Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001), 506-514.  K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal. 3 (1990), 173-188.  J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results, Proc. Roy. Soc. Edinburgh 131 A (2001), 967-985.  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension, Advances in Nonlinear Stud. 12 no.1, (2012), 115-122.  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., (). G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach," Progress in Nonlinear Differential Equations and Their Applications 72, Birkhäuser, Boston (2008)  Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis," Springer Monographs in Mathematics, Springer-Verlag, New York (2001)  Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068  D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499  Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183  Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072  Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617  Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119  Wenhui Chen, Alessandro Palmieri. A blow – up result for the semilinear Moore – Gibson – Thompson equation with nonlinearity of derivative type in the conservative case. Evolution Equations and Control Theory, 2021, 10 (4) : 673-687. doi: 10.3934/eect.2020085  Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139  Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108  Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825  Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025  Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011  Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042  Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure and Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697  Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237  Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086  Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1  Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657  Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621  Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

Impact Factor: