\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Longtime dynamics for an elastic waveguide model

Abstract Related Papers Cited by
  • The paper studies the longtime dynamics for a nonlinear wave equation arising in elastic waveguide model: $u_{tt}- \Delta u-\Delta u_{tt}+\Delta^2 u- \Delta u_t -\Delta g(u)=f(x)$. It proves that the equation possesses in trajectory phase space a global trajectory attractor $\mathcal{A}^{tr}$ and the full trajectory of the equation in $\mathcal{A}^{tr}$ is of backward regularity provided that the growth exponent of nonlinearity $g(u)$ is supercritical.
    Mathematics Subject Classification: Primary: 35B40, 35B41; Secondary: 35G31, 35L35, 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. W. Chen, Y. P. Wang and S. B. Wang, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Anal. Appl., 299 (2004), 563-577.

    [2]

    G. W. Chen and H. X. Xue, Periodic boundary value problem and Cauchy problem of the generalized cubic double dispersion equation, Acta Mathematica Scientia, 28B(3) (2008), 573-587.

    [3]

    V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics", American Mathematical Society Colloquium Publications, 49 (Providence, RI: American Mathematical Society), 2002.

    [4]

    Z. D. Dai and B. L. Guo, Global attractor of nonlinear strain waves in elastic wave guides, Acta Math. Sci., 20(B) (2000), 322-334.

    [5]

    Y. C. Liu and R.Z. Xu, Potential well method for Cauchy problem of generalized double dispersion equations, J. Math. Anal. Appl., 338 (2008), 1169-1187.

    [6]

    Y. C. Liu and R. Z. Xu, Potential well method for initial boundary value problem of the generalized double dispersion equations, Communications on Pure and Applied Analysis, 7 (2008), 63-81.

    [7]

    M. Samsonov and E. V. Sokurinskaya, Energy exchange between nonlinear waves in elastic wave guides in external media, in "Nonlinear Waves in Active Media", Springer, Berlin, (1989),99-104.

    [8]

    A. M. Samsonov, Nonlinear strain waves in elastic waveguide, "Nonlinear Waves in Solids, in Cism Courses and Lecture", (eds. A. Jeffery and J. Engelbrechet), vol. 341, Springer, Wien, 1994.

    [9]

    A. M. Samsonov, On Some Exact Travelling Wave Solutions for Nonlinear Hyperbolic Equation, in "Pitman Research Notes in Mathematics Series", vol. 227, Longman, (1993), 123-132.

    [10]

    S. B. Wang and G. W. Chen, Cauchy problem of the generalized double dispersion equation, Nonlinear Anal. TMA., 64 (2006), 159-173.

    [11]

    R. Z. Xu and Y. C. Liu, Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations, J. Math. Anal. Appl., 359 (2009), 739-751.

    [12]

    R. Z. Xu, Y. C. Liu and T. Yu, Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal. TMA., 71 (2009), 4977-4983.

    [13]

    Z. J. Yang, Global attractor for a nonlinear wave equation arising in elastic waveguide model, Nonlinear Anal. TMA., 70 (2009), 2132-2142.

    [14]

    Z. J. Yang, A global attractor for the elastic waveguide model in $R^N$, Nonlinear Anal. TMA., 74 (2011), 6640-6661.

    [15]

    S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Disc. Cont. Dyn. System-A, 11 (2004), 351-392.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return