-
Previous Article
Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport
- PROC Home
- This Issue
-
Next Article
Stochastic deformation of classical mechanics
Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations
1. | Department of Mathematics, University of Kansas, Lawrence, KS 66045, United States |
References:
show all references
References:
[1] |
Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785 |
[2] |
Christian Kuehn, Pasha Tkachov. Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2077-2100. doi: 10.3934/dcds.2019087 |
[3] |
Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure and Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1 |
[4] |
Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1665-1696. doi: 10.3934/dcds.2015.35.1665 |
[5] |
Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1193-1213. doi: 10.3934/cpaa.2016.15.1193 |
[6] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[7] |
Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087 |
[8] |
Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801 |
[9] |
Grégory Faye, Thomas Giletti, Matt Holzer. Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021146 |
[10] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[11] |
Aijun Zhang. Traveling wave solutions of periodic nonlocal Fisher-KPP equations with non-compact asymmetric kernel. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022061 |
[12] |
Jian-Wen Sun, Wan-Tong Li, Zhi-Cheng Wang. A nonlocal dispersal logistic equation with spatial degeneracy. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3217-3238. doi: 10.3934/dcds.2015.35.3217 |
[13] |
Carmen Cortázar, Manuel Elgueta, Jorge García-Melián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1409-1419. doi: 10.3934/dcds.2015.35.1409 |
[14] |
Aaron Hoffman, Matt Holzer. Invasion fronts on graphs: The Fisher-KPP equation on homogeneous trees and Erdős-Réyni graphs. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 671-694. doi: 10.3934/dcdsb.2018202 |
[15] |
Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 15-29. doi: 10.3934/dcdsb.2011.16.15 |
[16] |
Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure and Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019 |
[17] |
Benjamin Contri. Fisher-KPP equations and applications to a model in medical sciences. Networks and Heterogeneous Media, 2018, 13 (1) : 119-153. doi: 10.3934/nhm.2018006 |
[18] |
François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik. A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8 (1) : 275-289. doi: 10.3934/nhm.2013.8.275 |
[19] |
Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069 |
[20] |
Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]