Citation: |
[1] |
P. Amster and J. Haddad, A Hartman-Nagumo type conditions for a class of contractible domains, Topol. Methods Nonlinear Anal., 41 (2013), 287-304. |
[2] |
J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Topological Fixed Point Theory and Its Applications, Vol. 1, Kluwer, Dordrecht, 2003. |
[3] |
J. Andres, L. Malaguti and M. Pavlačková, Dirichlet problem in Banach spaces: the bound sets approach, Bound. Value Probl., 25 (2013), 1-21. |
[4] |
J. Andres, L. Malaguti and M. Pavlačková, On second-order boundary value problems in Banach spaces: a bound sets approach, Topol. Methods Nonlinear Anal., 37 (2011), 303-341. |
[5] |
J. Andres, L. Malaguti and M. Pavlačková, Scorza-Dragoni approach to Dirichlet problem in Banach spaces, Bound. Value Probl., 23 (2014), 1-24. |
[6] |
J. Andres, L. Malaguti and V. Taddei, On boundary value problems in Banach spaces, Dynam. Systems Appl., 18 (2009), 275-302. |
[7] |
S. R. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary value Problems, Mathematics in Science and Engineering, Vol. 109, |
[8] |
S. Cecchini, L. Malaguti and V. Taddei, Strictly localized bounding functions and Floquet boundary value problems, Electron. J. Qual. Theory Differ. Equ., 47 (2011), 1-18. |
[9] |
J. Chandra, V. Lakshmikantham and A. R. Mitchell, Existence of solutions of boundary value problems for nonlinear second-order systems in Banach space, Nonlinear Anal., 2 (1978), 157-168. |
[10] |
K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992. |
[11] |
L.H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions $y^{''}\in F(t,y,y')$, Ann. Polon. Math., 54 (1991), 195-226. |
[12] |
L. Erbe, C. C. Tisdell and P. J. Y. Wong, On systems of boundary value problems for differential inclusions, Acta Math. Sin. (Engl. Ser.), 23 (2007), 549-556. |
[13] |
C. Fabry and P. Habets, The Picard boundary value problem for nonlinear second order vector differential equations, J . Differential Equations, 42 (1981), 186-198. |
[14] |
M. Frigon, Boundary and periodic value problems for systems of differential equations under Bernstein-Nagumo growth condition, Differential Integral Equations, 8 (1995), 1789-1804. |
[15] |
R. E. Gaines and J. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, LNM 568, Springer, Berlin, 1977. |
[16] |
R. E. Gaines and J. Mawhin, Ordinary differential equations with nonlinear boundary conditions, J . Differential Equations, 26 (1977), 200-222. |
[17] |
A. Granas, R. B. Guenther and J. W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential system, J. Math. Pures Appl., 70 (1991), 153-196. |
[18] |
P. Hartman, On boundary value problems for systems of ordinary, nonlinear, second order differential equations, Trans. Amer. Math. Soc., 96 (1960), 493-509. |
[19] |
P. Hartman, Ordinary Differential Equations, Willey, New York, 1964. |
[20] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I. Theory. Mathematics and its Applications, 419, Kluwer, Dordrecht, 1997. |
[21] |
M. I. Kamenskii, V. V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7, |
[22] |
M. Kožušníková, A bounding functions approach to multivalued Dirichlet problem, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 55 (2007), 1-19. |
[23] |
A. Lasota and J. A. Yorke, Existence of solutions of two-point boundary value problems for nonlinear systems, J . Differential Equations, 11 (1972), 509-518. |
[24] |
N. H. Loc and K. Schmitt, Bernstein-Nagumo conditions and solutions to nonlinear differential inequalities, Nonlinear Anal., 75 (2012), 4664-4671. |
[25] |
J. Mawhin, Boundary value problems for nonlinear second order vector differential equations, J . Differential Equations, 16 (1974), 257-269. |
[26] |
J. Mawhin, The Bernstein-Nagumo problem and two-point boundary value problems for ordinary differential equations In: Qualitative Theory of Differential Equations (ed. M. Farkas), Budapest, 1981, pp. 709-740. |
[27] |
J. Mawhin, Two point boundary value problems for nonlinear second order differential equations in Hilbert spaces, Tôkoku Math. J., 32 (1980), 225-233. |
[28] |
J. Mawhin, Some boundary value problems for Hartman-type perturbation of the ordinary vector $p$-Laplacian, Nonlinear Anal., 40 (2000), Ser. A: Theory Methods, 497-503. |
[29] |
N. S. Papageorgiou and S. Th. Kyritsi-Yiallourou, Handbook of Applied Analysis, Advances in Mechanics and Mathematics, 19, Springer, Berlin, 2009. |
[30] |
M. Pavlačková, A bound sets technique for Dirichlet problem with an upper-Caratheodory right-hand side, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 49 (2010), 95-106. |
[31] |
M. Pavlačková, A Scorza-Dragoni approach to Dirichlet problem with an upper-Carathéodory right-hand side, Topol. Meth. Nonlin. Anal., 44 (2014), 239-247. |
[32] |
K. Schmitt, Randwertaufgaben für gewöhnliche Differentialgleichungen, Proc. Steiermark. Math. Symposium, |
[33] |
K. Schmitt and P. Volkmann, Boundary value problems for second order differential equations in convex subsets of a Banach space, Trans. Amer. Math. Soc., 218 (1976), 397-405. |
[34] |
K. Schmitt and R.C. Thompson, Boundary value problems for infinite systems of second-order differential equations, J . Differential Equations,18 (1975), 277-295. |