2015, 2015(special): 132-141. doi: 10.3934/proc.2015.0132

Analysis of the archetypal functional equation in the non-critical case

1. 

Department of Statistics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

2. 

Department of Mathematics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel

3. 

Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States

Received  September 2014 Revised  December 2014 Published  November 2015

We study the archetypal functional equation of the form $y(x)=\iint_{\mathbb{R}^2} y(a(x-b))\,\mu(da,db)$ ($x\in\mathbb{R}$), where $\mu$ is a probability measure on $\mathbb{R}^2$; equivalently, $y(x)=\mathbb{E}\{y(\alpha(x-\beta))\}$, where $\mathbb{E}$ is expectation with respect to the distribution $\mu$ of random coefficients $(\alpha,\beta)$. Existence of non-trivial (i.e. non-constant) bounded continuous solutions is governed by the value $K:=\iint_{\mathbb{R}^2}\ln|a|\,\mu(da,db) =\mathbb{E}\{\ln|\alpha|\}$; namely, under mild technical conditions no such solutions exist whenever $K<0$, whereas if $K>0$ (and $\alpha>0$) then there is a non-trivial solution constructed as the distribution function of a certain random series representing a self-similar measure associated with $(\alpha,\beta)$. Further results are obtained in the supercritical case $K>0$, including existence, uniqueness and a maximum principle. The case with $\mathbb{P}(\alpha<0)>0$ is drastically different from that with $\alpha>0$; in particular, we prove that a bounded solution $y(\cdot)$ possessing limits at $\pm\infty$ must be constant. The proofs employ martingale techniques applied to the martingale $y(X_n)$, where $(X_n)$ is an associated Markov chain with jumps of the form $x ⇝ \alpha(x-\beta)$.
Citation: Leonid V. Bogachev, Gregory Derfel, Stanislav A. Molchanov. Analysis of the archetypal functional equation in the non-critical case. Conference Publications, 2015, 2015 (special) : 132-141. doi: 10.3934/proc.2015.0132
References:
[1]

L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation, in Topics in Stochastic Analysis and Nonparametric Estimation (eds. P.-L. Chow et al.), Springer-Verlag, New York, 2008, pp. 29-49.  Google Scholar

[2]

L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescaling, Proc. Royal Soc. A, 471 (2015), 20150351, 1-19. Google Scholar

[3]

B. van Brunt and G. C. Wake, A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model, European J. Appl. Math., 22 (2011), 151-168.  Google Scholar

[4]

A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93 (1991), no. 453.  Google Scholar

[5]

G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu\star\sigma$, (French) [On the convolution equation $\mu=\mu\star\sigma$], C. R. Acad. Sci. Paris, 250 (1960), 799-801.  Google Scholar

[6]

I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.  Google Scholar

[7]

I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal., 22 (1991), 1388-1410.  Google Scholar

[8]

G. A. Derfel, Probabilistic method for a class of functional-differential equations, Ukrainian Math. J., 41 (1989), 1137-1141 (1990).  Google Scholar

[9]

G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes, J. Approx. Theory, 80 (1995), 272-297.  Google Scholar

[10]

G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213 (1997), 117-132.  Google Scholar

[11]

G. Derfel and R. Schilling, Spatially chaotic configurations and functional equations with rescaling, J. Phys. A, 29 (1996), 4537-4547.  Google Scholar

[12]

A. K. Grintsevichyus, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines, Theor. Probab. Appl., 19 (1974), 163-168.  Google Scholar

[13]

J. E. Hutchinson, Fractals and self similarlity, Indiana Univ. Math. J., 30 (1981), 713-747.  Google Scholar

[14]

A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math., 4 (1993), 1-38.  Google Scholar

[15]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=a y(\lambda x)+b y(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937. Google Scholar

[16]

J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Royal Soc. London A, 322 (1971), 447-468. Google Scholar

[17]

D. Revuz, Markov Chains, $2^{nd}$ edition, North-Holland, Amsterdam, 1984.  Google Scholar

[18]

V. A. Rvachev, Compactly supported solutions of functional-differential equations and their applications, Russian Math. Surveys, 45 (1) (1990), 87-120.  Google Scholar

[19]

R. Schilling, Spatially chaotic structures, in Nonlinear Dynamics in Solids (ed. H. Thomas), Springer-Verlag, Berlin, 1992, pp. 213-241. Google Scholar

[20]

A. N. Shiryaev, Probability, $2^{nd}$ edition, Springer-Verlag, New York, 1996.  Google Scholar

[21]

B. Solomyak, Notes on Bernoulli convolutions, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 1 (eds. M. L. Lapidus and M. van Frankenhuijsen), Amer. Math. Soc., Providence, RI, 2004, pp. 207-230.  Google Scholar

[22]

N. Steinmetz and P. Volkmann, Funktionalgleichungen für konstante Funktionen, (German) [Functional equations for constant functions], Aequationes Math., 27 (1984), 87-96.  Google Scholar

[23]

G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Rev., 31 (1989), 614-627.  Google Scholar

show all references

References:
[1]

L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation, in Topics in Stochastic Analysis and Nonparametric Estimation (eds. P.-L. Chow et al.), Springer-Verlag, New York, 2008, pp. 29-49.  Google Scholar

[2]

L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescaling, Proc. Royal Soc. A, 471 (2015), 20150351, 1-19. Google Scholar

[3]

B. van Brunt and G. C. Wake, A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model, European J. Appl. Math., 22 (2011), 151-168.  Google Scholar

[4]

A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93 (1991), no. 453.  Google Scholar

[5]

G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu\star\sigma$, (French) [On the convolution equation $\mu=\mu\star\sigma$], C. R. Acad. Sci. Paris, 250 (1960), 799-801.  Google Scholar

[6]

I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.  Google Scholar

[7]

I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal., 22 (1991), 1388-1410.  Google Scholar

[8]

G. A. Derfel, Probabilistic method for a class of functional-differential equations, Ukrainian Math. J., 41 (1989), 1137-1141 (1990).  Google Scholar

[9]

G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes, J. Approx. Theory, 80 (1995), 272-297.  Google Scholar

[10]

G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213 (1997), 117-132.  Google Scholar

[11]

G. Derfel and R. Schilling, Spatially chaotic configurations and functional equations with rescaling, J. Phys. A, 29 (1996), 4537-4547.  Google Scholar

[12]

A. K. Grintsevichyus, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines, Theor. Probab. Appl., 19 (1974), 163-168.  Google Scholar

[13]

J. E. Hutchinson, Fractals and self similarlity, Indiana Univ. Math. J., 30 (1981), 713-747.  Google Scholar

[14]

A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math., 4 (1993), 1-38.  Google Scholar

[15]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=a y(\lambda x)+b y(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937. Google Scholar

[16]

J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Royal Soc. London A, 322 (1971), 447-468. Google Scholar

[17]

D. Revuz, Markov Chains, $2^{nd}$ edition, North-Holland, Amsterdam, 1984.  Google Scholar

[18]

V. A. Rvachev, Compactly supported solutions of functional-differential equations and their applications, Russian Math. Surveys, 45 (1) (1990), 87-120.  Google Scholar

[19]

R. Schilling, Spatially chaotic structures, in Nonlinear Dynamics in Solids (ed. H. Thomas), Springer-Verlag, Berlin, 1992, pp. 213-241. Google Scholar

[20]

A. N. Shiryaev, Probability, $2^{nd}$ edition, Springer-Verlag, New York, 1996.  Google Scholar

[21]

B. Solomyak, Notes on Bernoulli convolutions, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 1 (eds. M. L. Lapidus and M. van Frankenhuijsen), Amer. Math. Soc., Providence, RI, 2004, pp. 207-230.  Google Scholar

[22]

N. Steinmetz and P. Volkmann, Funktionalgleichungen für konstante Funktionen, (German) [Functional equations for constant functions], Aequationes Math., 27 (1984), 87-96.  Google Scholar

[23]

G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Rev., 31 (1989), 614-627.  Google Scholar

[1]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

[2]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[3]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[4]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[5]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[6]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[7]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[8]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[9]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[10]

Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 309-323. doi: 10.3934/jcd.2021013

[11]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[12]

Jun Zhou, Jun Shen. Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021198

[13]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[14]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[15]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[16]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[17]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[18]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220

[19]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[20]

R.S. Dahiya, A. Zafer. Oscillatory theorems of n-th order functional differential equations. Conference Publications, 2001, 2001 (Special) : 435-443. doi: 10.3934/proc.2001.2001.435

 Impact Factor: 

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (0)

[Back to Top]