\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Matter-wave solitons with a minimal number of particles in a time-modulated quasi-periodic potential

Abstract Related Papers Cited by
  • The two-dimensional (2D) matter-wave soliton families supported by an external potential are systematically studied, in a vicinity of the junction between stable and unstable branches of the families. In this case the norm of the solution attains a minimum, facilitating the creation of such excitation. We study the dynamics and stability boundaries for fundamental solitons in a 2D self-attracting Bose-Einstein condensate (BEC), trapped in an quasiperiodic optical lattice (OL), with the amplitude subject to periodic time modulation.
    Mathematics Subject Classification: Primary: 35C08, 35C99; Secondary: 65N99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. A. Malomed, Soliton Management in Periodic Systems (Springer: New York, 2006).

    [2]

    A. Gaunt, R. Fletcher, R. Smith and Z. Hadzibabic, A superheated Bose-condensed gas, Nature Physics, 9, 271274 (2013).

    [3]

    G. Burlak and B. A. Malomed, Dynamics of matter-wave solitons in a time-modulated two-dimensional optical lattice, Phys. Rev. A, 77, 053606 (2008).

    [4]

    B. B. Baizakov, B. A. Malomed, and M. Salerno, Europhys. Lett., 63, 642 (2003); J. Yang and Z. H. Musslimani, Opt. Lett., 28, 2094 (2003); Z. H. Musslimani, and J. Yang, J. Opt. Soc. Am. B, 21, 973 (2004).

    [5]

    B. B. Baizakov, B. A. Malomed and M. Salerno, Phys. Rev. A, 70, 053613 (2004); Eur. Phys. J. D, 38, 367 (2006); T. Mayteevarunyoo, B. A. Malomed, B. B. Baizakov, and M. Salerno, Physica D, 238, 1439 (2009).

    [6]

    H. Sakaguchi and B. A. Malomed, Gap solitons in quasiperiodic optical lattices, Phys. Rev. E, 74, 026601 (2006).

    [7]

    N. G. Vakhitov, A. A. Kolokolov and Izv. Vys. Uch. Zaved., Radiofizika, 16, 1020 (1973) [in Russian; English translation: Radiophys. Quant. Electr., 16, 783 (1975)]; L. Bergé, Wave collapse in physics: principles and applications to light and plasma waves, Phys. Rep. 303 (1998), 259 ; E. A. Kuznetsov and F. Dias, Bifurcations of solitons and their stability, Phys. Rep. 507 (2011), 43.

    [8]

    G. Kalosakas, K. . Rasmussen and A. R. Bishop, Delocalizing Transition of Bose-Einstein Condensates in Optical Lattices, Phys. Rev. Lett., 89, 030402, 2002.

    [9]

    B. B. Baizakov, B. A. Malomed and M. Salerno, in: Nonlinear Waves: Classical and Quantum Aspects, ed. by F. Kh. Abdullaev and V. V. Konotop, pp. 61-80 (Kluwer Academic Publishers: Dordrecht, 2004); also available at: https://www.researchgate.net/publication/226210036_Multidimensional_Solitons_and_Vortices_in_Periodic_Potentials.

    [10]

    B. B. Baizakov, B. A. Malomed and M. Salerno, in: Nonlinear Waves: Classical and Quantum Aspects, ed. by F. Kh. Abdullaev, and V. V. Konotop, p. 61 (Kluwer Academic Publishers: Dordrecht, 2004).

    [11]

    G. Burlak and A. Klimov, The solitons redistribution in Bose-Einstein condensate in quasiperiodic optical lattice, Phys. Lett. A, 369, 510 (2007).

    [12]

    F. Dalfovo, S. Giorgini, and L. P. Pitaevskii, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71, 463 (1999).

    [13]

    B. A. Malomed, D. Mihalache, F. Wise and L. Torner, J. Spatiotemporal optical solitons, Optics B: Quant. Semics. Opt., 7, R53 (2005).

    [14]

    Y. V. Kartashov, B. A. Malomed and L. Torner, Solitons in nonlinear lattices, Rev. Mod. Phys., 83, 247 (2011).

    [15]

    J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud. Appl. Math. 120, 265 (2008).

    [16]

    F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463, 1 (2008).

    [17]

    J. Yang, Nonlinear waves in integrable and nonintegrable systems. (SIAM-USA, 2010).

    [18]

    G. Burlak, B. A. Malomed, Matter-wave solitons with a minimal number of particles in two-dimensional quasiperiodic potentials. Phys. Rev. E, 85, 57601-57606 (2012).

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return